1
|
Colombo R, Moroni G, Negri C, Delen G, Monai M, Donazzi A, Weckhuysen BM, Maestri M. Surface Carbon Formation and its Impact on Methane Dry Reforming Kinetics on Rhodium-Based Catalysts by Operando Raman Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202408668. [PMID: 38958601 DOI: 10.1002/anie.202408668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
A mechanism for carbon deposition and its impact on the reaction kinetics of Methane Dry Reforming (MDR) using Rhodium-based catalysts is presented. By integrating Raman spectroscopy with kinetic analysis in an operando-annular chemical reactor under strict chemical conditions, we discovered that carbon deposition on a Rh/α-Al2O3 catalyst follows a nucleation-growth mechanism. The dynamics of carbon aggregates at the surface is found to be ruled by the CO2/CH4 ratio and the inlet CH4 concentration. The findings elucidate the spatiotemporal development of carbon aggregates on the catalyst surface and their effects on catalytic performance. Furthermore, the proposed mechanism for carbon formation shows that the influence of CO2 on MDR kinetics is an indirect result of carbon accumulation over time frames exceeding the turnover frequency, thus reconciling conflicting reports in the literature regarding CO2's kinetic role in MDR.
Collapse
Affiliation(s)
- Riccardo Colombo
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Chiara Negri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Guusje Delen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alessandro Donazzi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| |
Collapse
|
2
|
Thum L, Arztmann M, Zizak I, Grüneberger R, Steigert A, Grimm N, Wallacher D, Schlatmann R, Amkreutz D, Gili A. In situ cell for grazing-incidence x-ray diffraction on thin films in thermal catalysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033904. [PMID: 38446003 DOI: 10.1063/5.0179989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
A cell for synchrotron-based grazing-incidence x-ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x-ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas-phase hydrogen and during acetylene semihydrogenation at 150 °C. The cell allows investigation of very thin films under catalytically relevant conditions.
Collapse
Affiliation(s)
- Lukas Thum
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Manuela Arztmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - René Grüneberger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Alexander Steigert
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Nico Grimm
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- HTW Berlin-University of Applied Sciences, 12459 Berlin, Germany
| | - Daniel Amkreutz
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Albert Gili
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
3
|
Li D, Cheng H, Hao X, Yu G, Qiu C, Xiao Y, Huang H, Lu Y, Zhang B. Wood-Derived Freestanding Carbon-Based Electrode with Hierarchical Structure for Industrial-Level Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304917. [PMID: 37560976 DOI: 10.1002/adma.202304917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Indexed: 08/11/2023]
Abstract
The sustainable and scalable fabrication of low-cost, efficient, and durable electrocatalysts that operate well at industrial-level current density is urgently needed for large-scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N-doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial-level current density of 1000 mA cm-2 at low overpotential of 401 mV. The freestanding binder-free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere-level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost-effective freestanding electrode with monometallic, bimetallic, or trimetallic species based on abundant natural wood resources for water splitting.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Hao Cheng
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xixun Hao
- School of Light Industry and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China
| | - Guoping Yu
- Transfar Group Co., Ltd; Transfar Tower, NO. 945 Minhe Road, Hangzhou, 311217, China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yanjun Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hubiao Huang
- RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
4
|
Haug L, Thurner C, Bekheet MF, Bischoff B, Gurlo A, Kunz M, Sartory B, Penner S, Klötzer B. Zirconium Carbide Mediates Coke‐Resistant Methane Dry Reforming on Nickel‐Zirconium Catalysts. Angew Chem Int Ed Engl 2022; 61:e202213249. [PMID: 36379010 PMCID: PMC10100075 DOI: 10.1002/anie.202213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Graphitic deposits anti-segregate into Ni0 nanoparticles to provide restored CH4 adsorption sites and near-surface/dissolved C atoms, which migrate to the Ni0 /ZrO2 interface and induce local Zrx Cy formation. The resulting oxygen-deficient carbidic phase boundary sites assist in the kinetically enhanced CO2 activation toward CO(g). This interface carbide mechanism allows for enhanced spillover of carbon to the ZrO2 support, and represents an alternative catalyst regeneration pathway with respect to the reverse oxygen spillover on Ni-CeZrx Oy catalysts. It is therefore rather likely on supports with limited oxygen storage/exchange kinetics but significant carbothermal reducibility.
Collapse
Affiliation(s)
- Leander Haug
- Institute of Physical Chemistry University of Innsbruck Innrain 52 c 6020 Innsbruck Austria
| | - Christoph Thurner
- Institute of Physical Chemistry University of Innsbruck Innrain 52 c 6020 Innsbruck Austria
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Germany
| | - Benjamin Bischoff
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Germany
| | - Martin Kunz
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bernhard Sartory
- Materials Center Leoben Forschung GmbH Roseggerstrasse 12 8700 Leoben Austria
| | - Simon Penner
- Institute of Physical Chemistry University of Innsbruck Innrain 52 c 6020 Innsbruck Austria
| | - Bernhard Klötzer
- Institute of Physical Chemistry University of Innsbruck Innrain 52 c 6020 Innsbruck Austria
| |
Collapse
|
5
|
Haug L, Thurner C, Bekheet MF, Bischoff B, Gurlo A, Kunz M, Sartory B, Penner S, Klötzer B. Zirkonkarbid ermöglicht verkokungsresistente Methan‐Trockenreformierung auf Nickel‐Zirkon‐Katalysatoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Leander Haug
- Institut für Physikalische Chemie Universität Innsbruck Innrain 52 c 6020 Innsbruck Österreich
| | - Christoph Thurner
- Institut für Physikalische Chemie Universität Innsbruck Innrain 52 c 6020 Innsbruck Österreich
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Benjamin Bischoff
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe Institut für Werkstoffwissenschaften und -technologien Technische Universität Berlin, Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Martin Kunz
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bernhard Sartory
- Materials Center Leoben Forschung GmbH Roseggerstrasse 12 8700 Leoben Österreich
| | - Simon Penner
- Institut für Physikalische Chemie Universität Innsbruck Innrain 52 c 6020 Innsbruck Österreich
| | - Bernhard Klötzer
- Institut für Physikalische Chemie Universität Innsbruck Innrain 52 c 6020 Innsbruck Österreich
| |
Collapse
|
6
|
Wang D, Littlewood P, Marks TJ, Stair PC, Weitz E. Coking Can Enhance Product Yields in the Dry Reforming of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dingdi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Littlewood
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter C. Stair
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric Weitz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Fan H, Qiu L, Fedorov A, Willinger MG, Ding F, Huang X. Dynamic State and Active Structure of Ni-Co Catalyst in Carbon Nanofiber Growth Revealed by in Situ Transmission Electron Microscopy. ACS NANO 2021; 15:17895-17906. [PMID: 34730325 DOI: 10.1021/acsnano.1c06189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloy catalysts often show superior effectiveness in the growth of carbon nanotubes/nanofibers (CNTs/CNFs) as compared to monometallic catalysts. However, due to the lack of an understanding of the active state and active structure, the origin of the superior performance of alloy catalysts is unknown. In this work, we report an in situ transmission electron microscopy (TEM) study of the CNF growth enabled by one of the most active known alloy catalysts, i.e., Ni-Co, providing insights into the active state and the interaction between Ni and Co in the working catalyst. We reveal that the functioning catalyst is highly dynamic, undergoing constant reshaping and periodic elongation/contraction. Atomic-scale imaging combined with in situ electron energy-loss spectroscopy further identifies the active structure as a Ni-Co metallic alloy (face-centered cubic, FCC). Aided by the molecular dynamics simulation and density functional theory calculations, we rationalize the dynamic behavior of the catalyst and the growth mechanism of CNFs and provide insight into the origin of the superior performance of the Ni-Co alloy catalyst.
Collapse
Affiliation(s)
- Hua Fan
- College of Chemistry, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
- Office of Science and Technology, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, South Korea
| | - Xing Huang
- College of Chemistry, Fuzhou University, Wulong River North Street 2, 350108 Fuzhou, People's Republic of China
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Sandoval-Bohórquez VS, Morales-Valencia EM, Castillo-Araiza CO, Ballesteros-Rueda LM, Baldovino-Medrano VG. Kinetic Assessment of the Dry Reforming of Methane over a Ni–La 2O 3 Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Víctor Stivenson Sandoval-Bohórquez
- Centro de Investigaciones en Catálisis (@CICAT UIS), Parque Tecnológico Guatiguará (PTG), Km. 2 vía El Refugio, Universidad Industrial de Santander, Piedecuesta (Santander) 681011, Colombia
| | - Edgar M. Morales-Valencia
- Centro de Investigaciones en Catálisis (@CICAT UIS), Parque Tecnológico Guatiguará (PTG), Km. 2 vía El Refugio, Universidad Industrial de Santander, Piedecuesta (Santander) 681011, Colombia
| | - Carlos O. Castillo-Araiza
- Laboratorio de Ingeniería de Reactores Aplicada a Sistemas Químicos y Biológicos, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana—Iztapalapa, 09340 CDMX, Mexico
| | - Luz M. Ballesteros-Rueda
- Centro de Investigaciones en Catálisis (@CICAT UIS), Parque Tecnológico Guatiguará (PTG), Km. 2 vía El Refugio, Universidad Industrial de Santander, Piedecuesta (Santander) 681011, Colombia
| | - Víctor G. Baldovino-Medrano
- Centro de Investigaciones en Catálisis (@CICAT UIS), Parque Tecnológico Guatiguará (PTG), Km. 2 vía El Refugio, Universidad Industrial de Santander, Piedecuesta (Santander) 681011, Colombia
- Laboratorio de Ciencia de Superficies (#SurfLab-UIS), Parque Tecnológico Guatiguará (PTG), Km. 2 vía El Refugio, Universidad Industrial de Santander, Piedecuesta (Santander) 681011, Colombia
| |
Collapse
|
9
|
Mueanngern Y, Li CH, Spelic M, Graham J, Pimental N, Khalifa Y, Jinschek JR, Baker LR. Deactivation-free ethanol steam reforming at nickel-tipped carbon filaments. Phys Chem Chem Phys 2021; 23:11764-11773. [PMID: 33982714 DOI: 10.1039/d1cp00637a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ni based catalysts have been widely studied for H2 production due to the ability of Ni to break C-C and C-H bonds. In this work, we study inverse catalysts prepared by well-controlled sub-monolayer deposition of CeO2 nanocubes onto Ni thin films for ethanol steam reforming (ESR). Results show that controlling the coverage of CeO2 nanocubes on Ni enhances H2 production by more than an order of magnitude compared to pure Ni. Contrary to the idea that C deposits must be continuously oxidized for sustained H2 production, the surface of the most active catalysts show significant C deposition, yet no deactivation is observed. HAADF-STEM analysis reveals the formation of carbon filaments (CFILs), which propel Ni particles upward at the filament tips via a catalytic tip growth mechanism, resulting in a Ni@CFIL active phase for ESR. Near-ambient pressure XPS indicates that the Ni@CFIL active phase forms as a result of C gradients at the interface between regions of pure Ni metal and domains of closely packed CeO2 nanocubes. These results show that the mesoscale morphology of deposited CeO2 nanocubes is responsible for templating the formation of a Ni@CFIL catalyst, which resists deactivation leading to highly active and stable H2 production from ethanol.
Collapse
Affiliation(s)
- Yutichai Mueanngern
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| | - Cheng-Han Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus Ohio 43210, USA
| | - Meiling Spelic
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| | - Joshua Graham
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| | - Nathan Pimental
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| | - Yehia Khalifa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| | - Joerg R Jinschek
- Department of Materials Science and Engineering, The Ohio State University, Columbus Ohio 43210, USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus Ohio 43210, USA.
| |
Collapse
|
10
|
Wang IW, Dagle RA, Khan TS, Lopez-Ruiz JA, Kovarik L, Jiang Y, Xu M, Wang Y, Jiang C, Davidson SD, Tavadze P, Li L, Hu J. Catalytic decomposition of methane into hydrogen and high-value carbons: combined experimental and DFT computational study. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00287b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thermocatalytic decomposition (TCD) of methane can produce hydrogen and valuable nanocarbon co-products with low to near-zero CO2 emission.
Collapse
Affiliation(s)
- I.-Wen Wang
- Department of Chemical & Biomedical Engineering
- West Virginia University
- Morgantown
- USA
| | - Robert A. Dagle
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- USA
| | - Tuhin Suvra Khan
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
| | - Juan A. Lopez-Ruiz
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- USA
| | - Libor Kovarik
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- USA
| | - Yuan Jiang
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- USA
| | - Mengze Xu
- Institute for Integrated Catalysis
- Pacific Northwest National Laboratory
- USA
| | - Yi Wang
- Department of Mechanical & Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| | - Changle Jiang
- Department of Chemical & Biomedical Engineering
- West Virginia University
- Morgantown
- USA
| | | | - Pedram Tavadze
- Department of Physics
- West Virginia University
- Morgantown
- USA
| | - Lili Li
- College of Life Science and Agronomy
- Zhoukou Normal University
- Zhoukou
- China
| | - Jianli Hu
- Department of Chemical & Biomedical Engineering
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
11
|
Niu Y, Huang X, Wang Y, Xu M, Chen J, Xu S, Willinger MG, Zhang W, Wei M, Zhang B. Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne. Nat Commun 2020; 11:3324. [PMID: 32620829 PMCID: PMC7335178 DOI: 10.1038/s41467-020-17188-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
Light elements in the interstitial site of transition metals have strong influence on heterogeneous catalysis via either expression of surface structures or even direct participation into reaction. Interstitial atoms are generally metastable with a strong environmental dependence, setting up giant challenges in controlling of heterogeneous catalysis. Herein, we show that the desired carbon atoms can be manipulated within nickel (Ni) lattice for improving the selectivity in acetylene hydrogenation reaction. The radius of octahedral space of Ni is expanded from 0.517 to 0.524 Å via formation of Ni3Zn, affording the dissociated carbon atoms to readily dissolve and diffuse at mild temperatures. Such incorporated carbon atoms coordinate with the surrounding Ni atoms for generation of Ni3ZnC0.7 and thereof inhibit the formation of subsurface hydrogen structures. Thus, the selectivity and stability are dramatically improved, as it enables suppressing the pathway of ethylene hydrogenation and restraining the accumulation of carbonaceous species on surface.
Collapse
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Xing Huang
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.,Scientific Center for Optical and Electron Microscopy, Otto-Stern-Weg 3, ETH Zurich, 8093, Zurich, Switzerland
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Shuliang Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Marc-Georg Willinger
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.,Scientific Center for Optical and Electron Microscopy, Otto-Stern-Weg 3, ETH Zurich, 8093, Zurich, Switzerland
| | - Wei Zhang
- Electron Microscopy Center, Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, Jilin University, 130012, Changchun, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China. .,Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
12
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|