1
|
Zhan JL, Zhou SN, Wang Y, Liu R, Wang YT, Tian M, Meng Q, Zhu L, Kong X, Lv Y. Direct β-C-H ketoalkylation of enaminoesters with cyclopropanols under metal-free conditions. Org Biomol Chem 2025. [PMID: 39812013 DOI: 10.1039/d4ob01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A TEMPO-mediated β-ketoalkylation of enaminoesters with cyclopropanols under metal-free conditions is herein described. This reaction provides a straightforward and highly efficient route to β-keto alkyl substituted enaminoesters for the first time, which could be rapidly and efficiently converted into synthetically useful 2-alkoxycarbonyl functionalized 1,5-diketones. Moreover, the practicability of this protocol is successfully demonstrated by scale-up experiments and the late-stage functionalization of natural products and pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Sai-Nan Zhou
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yu Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Rui Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yu-Tong Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Mengke Tian
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Qiang Meng
- School of Chemistry, Science, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Xiangtao Kong
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yunhe Lv
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| |
Collapse
|
2
|
Feng C, Guo H, Ding A. Visible Light-Induced Divergent Deoxygenation/Hydroxymethylation of Pyridine N-Oxides. J Org Chem 2025. [PMID: 39789729 DOI: 10.1021/acs.joc.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This study explores the deoxygenation of pyridine N-oxides and presents a one-step photoredox method for the direct synthesis of 2-hydroxymethylated pyridines from pyridine N-oxides. Mechanism studies elucidate the role of the catalyst and provide evidence of the possible electron transfer process and the formation of key radicals. A range of pyridine derivatives, particularly 2-hydroxymethyl-substituted pyridines, which may be difficult to obtain, can be synthesized in a single step.
Collapse
Affiliation(s)
- Changhao Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
3
|
Liu YY, Zhai YT. Iron-Catalyzed One-Pot Cascade Reactions of Oximes with Inactivated Saturated Ketones: Entry to Highly Substituted Pyridines. J Org Chem 2024; 89:17598-17608. [PMID: 39509683 DOI: 10.1021/acs.joc.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An iron-catalyzed oxidative [3 + 3] annulation of oxime esters with inactivated saturated ketones is described. This cascade strategy allows one-step rapid synthesis of various structurally important pyridines through an oxidative dehydrogenation/annulation/oxidative aromatization sequence via direct α,β-dehydrogenation of simple saturated ketones followed by annulation with oximes. This method shows good functional group tolerance, readily accessible starting materials, a wide substrate scope, high chemoselectivity, and no need for extra stoichiometric oxidant and is also applicable to the late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Yan-Yun Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yu-Ting Zhai
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| |
Collapse
|
4
|
Zhan JL, Yuan SL, Wei JS, Zhang MS, Yuan ZY, Wei YX, Meng Q, Zhu L, Lv Y, Li G. Ring-Opening α,β-Difunctionalization of Cyclopropanols with Azides Enables 4-Keto-Functionalized 1,2,3-Triazole Synthesis. Org Lett 2024; 26:9553-9557. [PMID: 39466046 DOI: 10.1021/acs.orglett.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Selective C-C bond cleavage and transformation of organic small molecules to create products of increased value are one of the central goals in organic chemistry. In this study, we have developed a novel TEMPO-mediated ring-opening α,β-difunctionalization of cyclopropyl alcohols with organic azides to prepare structurally important 4-keto-1,2,3-triazoles under metal- and additive-free conditions. This protocol not only provides a straightforward and efficient method for the synthesis of 4-keto-functionalized 1,2,3-triazoles in one pot but also accomplishes the goal of constructing α,β-double C-N bonds via the ring opening of cyclopropyl alcohols for the first time. Additionally, the application of the skeletons of drugs and natural products and the synthesis of Kv1.5 channel blocker 4u further demonstrate the synthetic potential and practicability of this strategy.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sheng-Ling Yuan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jiang-Shan Wei
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Meng-Shuang Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Zi-Ying Yuan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yu-Xin Wei
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Qiang Meng
- School of Chemistry, Science, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yunhe Lv
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Gang Li
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
5
|
Liu ZX, Li HY, Shen S, Yang XL, Niu X. TEMPO as Hydrogen Atom Transfer Catalyst in Enhancing Iminyl Radical Cyclization of O-Acetyl Oxime toward Phenanthridines and Isoquinolines. J Org Chem 2024; 89:15459-15471. [PMID: 39414781 DOI: 10.1021/acs.joc.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Herein, we present a strategy for promoting the cyclization of ortho-aryl or ortho alkenyl arylketone oxime ethers C-N bonds using TEMPO as a direct hydrogen atom transfer (HAT) catalyst. The reaction employs a green solvent and requires no introduction of metal additives. It only needs catalytic amount of TEMPO to drive the reaction. Gram-scale reaction yields the corresponding products with satisfactory yields, providing a novel and efficient method for the synthesis of phenanthridine and isoquinoline derivatives.
Collapse
Affiliation(s)
- Zi-Xuan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Hao-Yuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Dong X, Shao Y, Liu Z, Huang X, Xue XS, Chen Y. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions. Angew Chem Int Ed Engl 2024; 63:e202410297. [PMID: 39031447 DOI: 10.1002/anie.202410297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Metal-free synthesis of heterocycles is highly sought after in the pharmaceutical industry and has garnered widespread attention due to eliminating the need to remove trace metal catalysts from the reaction. We report a radical 6-endo addition method for pyridine synthesis from cyclopropylamides and alkynes under metal-free conditions. Various terminal and substituted alkynes are inserted as C2 units into cyclopropylamides to synthesize versatile pyridines with 57 examples. Mechanistic investigations and computational studies indicate the unprecedented 6-endo-trig addition of vinyl radicals to the imine nitrogen atom rather than the conventional 5-exo-trig addition to the imine carbon atom, in which the hypervalent iodine(III) plays a critical role. This reaction easily scales up with excellent functional group compatibility and suits the late-stage pyridine installation on complex molecules.
Collapse
Affiliation(s)
- Xiaojuan Dong
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xia Huang
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
7
|
Liang B, Cai X, Xu S, Huang J, Deng H, Ren W, Chen J, Lo TWB, Chen X, Zhu Z. NaOAc-Promoted [3+1+2] Annulation of O-Pivaloyl Oximes, Aldehydes, and 2-Methylbenzothiazole Salts: Synthesis of 1-Azaphenothiazines. J Org Chem 2024; 89:13438-13449. [PMID: 39233546 DOI: 10.1021/acs.joc.4c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This paper presents an efficient strategy for constructing 1-azaphenothiazines through the NaOAc-promoted [3+1+2] annulation of O-pivaloyl oximes, aldehydes, and 2-methylbenzothiazole salts. The reaction is conducted in ethanol and employs oxygen as the oxidant under catalyst-free conditions. The process is amenable to various O-pivaloyl oximes, 2-methylbenzothiazole salts, and aldehydes, affording the target products in satisfactory yields.
Collapse
Affiliation(s)
- Baihui Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangya Cai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Shengting Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jie Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Haiyin Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Weijie Ren
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiehao Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiuwen Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Fan G, Wu C, Liu X, Liu P. Sequential Ring Opening/In Situ SO 2-Capture/Alkynylation of Cyclopropanols with Alkynyl Triflones Initiated by Energy Transfer. J Org Chem 2024. [PMID: 38745550 DOI: 10.1021/acs.joc.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A visible-light-triggered ring opening/in situ SO2-capture/alkynylation sequence of cyclopropyl alcohols with alkynyl triflones using 4CzIPN as a triplet energy transfer photocatalyst is herein described. This metal-free protocol provides a straightforward and atom-economical approach to alkynyl-substituted γ-keto sulfones with a broad scope of substituents. In this transformation, alkynyl triflones could be used as both radical acceptors and SO2 donors. Preliminary experimental mechanistic studies and synthetic utility are also demonstrated.
Collapse
Affiliation(s)
- Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Changfu Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Xu B, Liu X, Deng L, Shang Y, Jie X, Su W. Dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines: Molecular complexities via one-shot assembly. SCIENCE ADVANCES 2024; 10:eadn7656. [PMID: 38691610 PMCID: PMC11062582 DOI: 10.1126/sciadv.adn7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Polyfunctionalized arenes are privileged structural motifs in both academic and industrial chemistry. Conventional methods for accessing this class of chemicals usually involve stepwise modification of phenyl rings, often necessitating expensive noble metal catalysts and suffering from low reactivity and selectivity when introducing multiple functionalities. We herein report dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines. The developed reaction system enables incorporating amino and hydroxyl groups into aromatic rings in a one-shot fashion, which simplifies polyfunctionalized 2-aminophenol synthesis by circumventing issues associated with traditional arene modifications. The wide substrate scope and excellent functional group tolerance are exemplified by late-stage modification of complex natural products and pharmaceuticals that are unattainable by existing methods. This dehydrogenative protocol benefits from using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as oxidant that offers interesting chemo- and regio-selective oxidation processes. More notably, the essential role of in situ generated water is disclosed, which protects aliphatic amine moieties from overoxidation via hydrogen bond-enabled interaction.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Lei Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
10
|
Zhan JL, Zhu L, Bai JN, Liu JB, Zhang SH, Xie YQ, Hu BM, Wang Y, Han WJ. Transition metal-free [3 + 3] annulation of cyclopropanols with β-enamine esters to assemble nicotinate derivatives. Org Biomol Chem 2023; 21:8984-8988. [PMID: 37937487 DOI: 10.1039/d3ob01662e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with β-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Jia-Nan Bai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Jian-Bo Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Shi-Han Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yao-Qiang Xie
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Bo-Mei Hu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Yang Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
11
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
12
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
13
|
Jiang HM, Zhao YL, Sun Q, Ouyang XH, Li JH. Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules 2023; 28:molecules28041775. [PMID: 36838760 PMCID: PMC9964420 DOI: 10.3390/molecules28041775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Oximes and hydroxylamines are a very important class of skeletons that not only widely exist in natural products and drug molecules, but also a class of synthon, which have been widely used in industrial production. Due to weak N-O σ bonds of oximes and hydroxylamines, they can be easily transformed into other functional groups by N-O bond cleavage. Therefore, the synthesis of N-heterocycle by using oximes and hydroxylamines as nitrogen sources has attracted wide attention. Recent advances for the synthesis of N-heterocycle through transition-metal-catalyzed and radical-mediated cyclization classified by the type of nitrogen sources and rings are summarized. In this paper, the recent advances in the N-O bond cleavage of oximes and hydroxylamines are reviewed. We hope that this review provides a new perspective on this field, and also provides a reference to develop environmentally friendly and sustainable methods.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| | - Jin-Heng Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| |
Collapse
|
14
|
Yang HT, Zhou SQ, Chen DM, Hu ZJ, Qiang XQ, Song XQ, Tan S, Jiang WH, Sun YQ, Miao CB. Copper-Catalyzed Annulation of O-Acyl Oximes with Cyclic 1,3-Diones for the Synthesis of 7,8-Dihydroindolizin-5(6 H)-ones and Cyclohexanone-Fused Furans. Org Lett 2023; 25:838-842. [PMID: 36705486 DOI: 10.1021/acs.orglett.3c00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed annulation of O-acyl oximes with cyclic 1,3-diones has been developed for the concise synthesis of 7,8-dihydroindolizin-5(6H)-ones and cyclohexanone-fused furans through the substituent-controlled selective radical coupling process. 2-Alkyl cyclic 1,3-diones undergo C-C radical coupling, while 2-unsubstituted cyclic 1,3-diones undergo C-O radical coupling.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Su-Qing Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Dan-Mei Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zi-Jun Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qi Qiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qing Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Sheng Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wei-Hua Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yong-Qiang Sun
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
15
|
Sharma S, Shaheeda S, Shaw K, Bisai A, Paul A. Two-Electron- and One-Electron-Transfer Pathways for TEMPO-Catalyzed Greener Electrochemical Dimerization of 3-Substituted-2-Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
16
|
Wun BJ, Hu YC, Chi CY, Chuang GJ. Photoinduced Decarbonylative Rearrangement of Diazabicyclo[2.2.2]Octenones: A Photochemical Approach of Diazabicyclo[4.1.0]heptene Skeleton from Masked o-Benzoquinone. J Org Chem 2023; 88:1235-1244. [PMID: 36606370 DOI: 10.1021/acs.joc.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a photoinduced decarbonylative rearrangement of diazabicyclo[2.2.2]octenone in the facile synthesis of a functionalized diazabicyclo[4.1.0]heptene skeleton, a unique derivative of the hydropyridazine type structure which could be found in a variety of biologically active natural products. The scope of functional group compatibility in the photoreaction was examined by taking advantage of the easy access of the heterobicyclo[2.2.2] structure from the Diels-Alder reaction of masked o-benzoquinones. 4-Phenyl-1,2,4-triazoline-3,5-dione served as the dienophile which provided the adjacent N-N unit in hexahydropyridazine-type products of subsequent photorearrangement.
Collapse
Affiliation(s)
- Bo-Jyun Wun
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Yung-Chen Hu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chu-Yun Chi
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
17
|
Bodala V, Podugu RL, Yettula K, Gollamudi P, Vidavalur S, Pulipaka S. Iron-Catalysed [3+3] Annulation of Oxime Acetates and Enaminones towards the Synthesis of Multi-Substituted Pyridines. Chem Asian J 2023; 18:e202201004. [PMID: 36461710 DOI: 10.1002/asia.202201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Indexed: 12/04/2022]
Abstract
A direct access to unsymmetrical and symmetrical multi-substituted pyridines has been accomplished via iron-catalysed [3+3] annulation of oxime acetates with enaminones. This protocol is featured by easily available starting materials, no requirement of expensive additives and ligands, operational simplicity, and good tolerance with diverse functional groups.
Collapse
Affiliation(s)
- Varaprasad Bodala
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | | | - Kumari Yettula
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Padmarao Gollamudi
- Department of Chemistry, Dr. B. R. Ambedkar University, Srikakulam, 532410, India
| | - Siddaiah Vidavalur
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Shyamala Pulipaka
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
18
|
Huang XK, Li LP, Zhou HY, Xiong MF, Fan JY, Ye BH. Switching the Photoreactions of Ir(III) Diamine Complexes between C-N Coupling and Dehydrogenation under Visible Light Irradiation. Inorg Chem 2022; 61:20834-20847. [PMID: 36520143 DOI: 10.1021/acs.inorgchem.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective photoreactions under mild conditions play an important role in synthetic chemistry. Herein, efficient and mild protocols for switching the photoreactions of Ir(III)-diamine complexes between the interligand C-N coupling and dehydrogenation are developed in the presence of O2 in EtOH solution. The photoreactions of achiral diamine complexes rac-[Ir(L)2(dm)](PF6) (L is 2-phenylquinoline or 2-(2,4-difluorophenyl)quinoline, dm is 1,2-ethylenediamine, 1,2-diaminopropane, 2-methyl-1,2-diamino-propane, or N,N'-dimethyl-1,2-ethylenediamine) are competitive in the oxidative C-N coupling and dehydrogenation at room temperature, which can be switched into the interligand C-N coupling reaction at 60 °C, affording hexadentate complexes in good to excellent yields, or the dehydrogenative reaction in the presence of a catalytic amount of TEMPO as an additive, affording imine complexes. Mechanism studies reveal that 1O2 is the major reactive oxygen species, and metal aminyl is the key intermediate in the formation of the oxidative C-N coupling and imine products in the photoreaction processes. These will provide a new and practical protocol for the synthesis of multidentate and imine ligands in situ via the postcoordinated strategy under mild conditions.
Collapse
Affiliation(s)
- Xiao-Kang Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Hai-Yun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Ming-Feng Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Jing-Yan Fan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 Guangdong, China
| |
Collapse
|
19
|
Zhang X, Yang TM, Hu LM, Hu XH. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp 2)–H Functionalization. Org Lett 2022; 24:8677-8682. [DOI: 10.1021/acs.orglett.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Ming Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Li Y, Yang K, Cao L. Copper-catalyzed [3+3] annulation of ketones with oxime acetates for the synthesis of pyridines. RSC Adv 2022; 12:27546-27549. [PMID: 36276018 PMCID: PMC9516370 DOI: 10.1039/d2ra05050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 09/19/2023] Open
Abstract
A novel and efficient copper-catalyzed strategy for the synthesis of diverse pyridines through the [3+3] annulation of ketones with oxime acetates has been reported. It is very convenient to obtain various unsymmetrical 2,6-diarylpyridines by changing different substrates. The rare copper-catalyzed direct difunctionalization of saturated ketones for the synthesis of nitrogen heterocycles is developed. This protocol has excellent functional group tolerance, readily available raw materials, high chemoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Yilin Li
- Guangzhou Darui Bio-technology Co. Ltd China
| | - Kai Yang
- College of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Cao
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 Guangdong China
| |
Collapse
|
21
|
Zhai S, Qiu S, Yang S, Gao X, Feng X, Yun C, Han N, Niu Y, Wang J, Zhai H. Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
23
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
24
|
Miao CB, Qiang XQ, Xu X, Song XQ, Zhou SQ, Lyu X, Yang HT. Synthesis of Stable N-H Imines with a Benzo[7,8]indolizine Core and Benzo[7,8]indolizino[1,2- c]quinolines via Copper-Catalyzed Annulation of α,β-Unsaturated O-Acyl Ketoximes with Isoquinolinium N-Ylides. Org Lett 2022; 24:3828-3833. [PMID: 35605016 DOI: 10.1021/acs.orglett.2c01386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed annulation of α,β-unsaturated O-acyl ketoximes with isoquinolinium N-ylides has been developed for the concise synthesis of stable N-H imines with a benzo[7,8]indolizine core. When β-(2-bromoaryl)-α,β-unsaturated O-acyl ketoximes are used as the starting materials, a cascade cyclization occurs to afford the benzo[7,8]indolizino[1,2-c]quinolines.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qi Qiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoli Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qing Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Su-Qing Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xinyu Lyu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
25
|
Yadav A, Yadav A, Tripathi S, Dewaker V, Kant R, Yadav PN, Srivastava AK. Copper-Catalyzed Oxidative [3 + 2]-Annulation of Quinoxalin-2(1 H)-one with Oxime Esters toward Functionalized Pyrazolo[1,5- a]quinoxalin-4(5 H)-ones as Opioid Receptor Modulators. J Org Chem 2022; 87:7350-7364. [PMID: 35587158 DOI: 10.1021/acs.joc.2c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrazolo[1,5-a]quinoxalin-4(5H)-one derivatives as novel opioid receptor modulators have been synthesized via copper-catalyzed oxidative [3 + 2]-annulation of quinoxalin-2(1H)-one and oxime-O-acetates. This hydrazine-free C-C and N-N bond formation strategy starts with the generation of C2N1 synthon using oxime acetate, which reacts in a [3 + 2] manner with quinoxalin-2(1H)-one, followed by oxidative aromatization. The synthesized compounds were tested against opioid receptors, of which eight compounds exhibited an antagonistic effect with EC50 < 5 μM at various opioid receptors. Molecular docking studies were performed to identify the binding of active pyrazolo[1,5-a]quinoxalin-4(5H)-one ligands with hKOR protein. Docking results indicated that compounds 3d and 3g participate in hydrogen bonding with the hydroxyl group of T111 of the active site pocket residue.
Collapse
Affiliation(s)
- Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubhav Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem Narayan Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Qu Z, Tian T, Deng GJ, Huang H. Diverse catalytic systems for nitrogen-heterocycle formation from O-acyl ketoximes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wang ZH, Yang P, Zhang YP, You Y, Zhao JQ, Zhou MQ, Yuan WC. Copper‐catalyzed ring‐opening (3+2) annulation of cyclopropenones with ketoxime acetates: access to 1,2‐dihydro‐pyrrol‐3‐ones bearing a quaternary carbon center. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Ping Yang
- ZMC: Zunyi Medical University School of Pharmacy CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study CHINA
| | - Ming-Qiang Zhou
- Chengdu Institute of Organic Chemistry CAS: Chengdu Organic Chemicals Co Ltd National Engineering Research Center of Chiral Drugs CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
28
|
Wang A, Liu YZ, Shen Z, Qiao Z, Ma X. Regioselective Synthesis of Pyrazolo[1,5- a]pyridine via TEMPO-Mediated [3 + 2] Annulation-Aromatization of N-Aminopyridines and α,β-Unsaturated Compounds. Org Lett 2022; 24:1454-1459. [PMID: 35166547 DOI: 10.1021/acs.orglett.2c00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A TEMPO-mediated [3 + 2] annulation-aromatization protocol for the preparation of pyrazolo[1,5-a]pyridines from N-aminopyridines and α,β-unsaturated compounds was developed. The procedure offered multisubstituted pyrazolo[1,5-a]pyridines in good to excellent yield with high and predictable regioselectivity. The modification of marketed drugs including Loratadine, Abiraterone, and Metochalcone, and a one-pot three-step gram scale synthesis of key intermediate for the preparation of Selpercatinib were demonstrated. Mechanism studies show that TEMPO serves both as a Lewis acid and as an oxidant.
Collapse
Affiliation(s)
- Amu Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Zhongke Shen
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeen Qiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| |
Collapse
|
29
|
Hou H, Ma X, Ye Y, Wu M, Shi S, Zheng W, Lin M, Sun W, Ke F. Non-metal-mediated N-oxyl radical (TEMPO)-induced acceptorless dehydrogenation of N-heterocycles via electrocatalysis. RSC Adv 2022; 12:5483-5488. [PMID: 35425580 PMCID: PMC8981507 DOI: 10.1039/d1ra08919f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
The development of protocols for direct catalytic acceptorless dehydrogenation of N-heterocycles with metal-free catalysts holds the key to difficulties in green and sustainable chemistry. Herein, an N-oxyl radical (TEMPO) acting as an oxidant in combination with electrochemistry is used as a synthesis system under neutral conditions to produce N-heterocycles such as benzimidazole and quinazolinone. The key feature of this protocol is the utilization of the TEMPO system as an inexpensive and easy to handle radical surrogate that can effectively promote the dehydrogenation reaction. Mechanistic studies also suggest that oxidative TEMPOs redox catalytic cycle participates in the dehydrogenation of 2,3-dihydro heteroarenes.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yaling Ye
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Mei Wu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Sunjie Shi
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Wenhe Zheng
- The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 China
| | - Mei Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| |
Collapse
|
30
|
Iwumene NUN, Moseley DF, Pullin RDC, Willis MC. Diverse saturated heterocycles from a hydroacylation/conjugate addition cascade. Chem Sci 2022; 13:1504-1511. [PMID: 35222935 PMCID: PMC8809418 DOI: 10.1039/d1sc06900d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed hydroacylation using alkynes substituted with pendant nucleophiles, delivers linear α,β-unsaturated enone intermediates with excellent regioselectivity. These adducts are used to construct a broad range of diversely substituted, saturated O-, N- and S-heterocycles in a one-pot process. Judicious choice of cyclisation conditions enabled isolation of O-heterocycles with high levels of diastereoselectivity. A variety of derivatisation reactions are also performed, generating functionalised hydroacylation products. This sequence serves as a general approach for the synthesis of fully saturated heterocycles.
Collapse
Affiliation(s)
- Ndidi U N Iwumene
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Daniel F Moseley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Robert D C Pullin
- Vertex Pharmaceuticals (Europe) Ltd 86-88 Jubilee Avenue, Milton Park Abingdon OX14 4RW UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
31
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
32
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
33
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Zhu L, Song D, Liu YH, Chen MD, Zhang XR, You MY, Zhan JL. Iron-catalyzed regioselective synthesis of ( E)-vinyl sulfones mediated by unprotected hydroxylamines. Org Biomol Chem 2022; 20:9127-9131. [DOI: 10.1039/d2ob01922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An Fe-catalyzed unprotected hydroxylamine mediated Heck-type coupling between sulfinic acids and alkenes furnished structurally important (E)-vinyl sulfones with moderate to good yields, high atom-economy and regioselectivity.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Dian Song
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Yi-Han Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Di Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Xin-Ru Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Meng-Yan You
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Jun-Long Zhan
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| |
Collapse
|
35
|
Meng X, Cheng D, Wang S, Zhao X, Chen J. NH4I-Catalyzed Formal [4+2] Cycloaddition of α,β-Unsaturated O-Acetyl Oxime with Alkyl Pyruvate for Rapid Substituted Pyridine Formation. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Wang J, Li X. Asymmetric β-Arylation of Cyclopropanols Enabled by Photoredox and Nickel Dual Catalysis. Chem Sci 2022; 13:3020-3026. [PMID: 35382467 PMCID: PMC8905987 DOI: 10.1039/d1sc07237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides...
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| |
Collapse
|
37
|
Shirsath SR, Chandgude SM, Muthukrishnan M. Iron catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols with p-quinone methides: new access to γ,γ-diaryl ketones. Chem Commun (Camb) 2021; 57:13582-13585. [PMID: 34846388 DOI: 10.1039/d1cc05997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron(III) catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols to p-quinone methides leading to γ,γ-diaryl ketones has been described. This catalytic protocol provides a novel and efficient method to access γ,γ-diaryl ketone derivatives in good to excellent yields with high functional group tolerance. Importantly, γ,γ-diaryl ketone can be further functionalized to give a versatile set of useful products.
Collapse
Affiliation(s)
- Sachin R Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar M Chandgude
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Gujjarappa R, Vodnala N, Musib D, Malakar CC. Organocatalytic Decarboxylation and Dual C(sp
3
)−H Bond Functionalization Toward Facile Access to Divergent 2,6‐Diarylpyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
- Department of Chemistry Indian Institute of Technology Delhi Multi-storey building, HauzKhas New Delhi 110016 India
| | - Dulal Musib
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| |
Collapse
|
39
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
40
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-catalyzed three-component formal [3 + 1 + 2] annulations for the synthesis of 2-aminopyrimidines from O-acyl ketoximes. Org Biomol Chem 2021; 19:8706-8710. [PMID: 34581386 DOI: 10.1039/d1ob01582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A copper-based catalytic system has been developed to enable formal [3 + 1 + 2] annulations of ketoxime acetates, aldehydes, and cyanamides. This protocol offers a new strategy for the synthesis of highly substituted 2-aminopyrimidine compounds, and more importantly, pyrimidines have now been included in the N-heterocycle family constructed using O-acyl ketoximes as N-C-C synthons.
Collapse
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
41
|
Mao Y, Mao H, Xu J, Liu T, Liu B, Tan Q, Ding CH, Xu B. Synthesis of Poly-Substituted Pyridines via Noble-Metal-Free Cycloaddition of Ketones and Imines. Chem Asian J 2021; 16:3905-3908. [PMID: 34626095 DOI: 10.1002/asia.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Indexed: 11/12/2022]
Abstract
An eco-friendly and noble-metal-free formal [4+2] cycloaddition reaction was developed for the efficient synthesis of biologically interesting poly-substituted pyridines from easily available ketones and imines, whereby two sequential C-C bonds are formed. The given approach features a unique synthetic strategy of imines and ketones with wide substrate scope, good functional group tolerance, mild conditions and operational simplicity, which represents a more direct pathway to synthesize poly-substituted pyridines than traditional methods.
Collapse
Affiliation(s)
- Yeting Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hong Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaojiao Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianqi Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bingxin Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Qitao Tan
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang-Hua Ding
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
42
|
Schäfer C, Cho H, Vlocskó B, Xie G, Török B. Recent Advances in the Green Synthesis of Heterocycles: From Building Blocks to Biologically Active Compounds. Curr Org Synth 2021; 19:426-462. [PMID: 34515007 DOI: 10.2174/1570179418666210910110205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022]
Abstract
Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Hyejin Cho
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| |
Collapse
|
43
|
Zhang X, Miao X, Jiang H, Ge F, Sun J, Zhang R, Ouyang Q, Fan W, Zhu Y, Sun Y. Iodine‐Promoted Synthesis of Dipyrazolo/Diuracil‐Fused Pyridines and
o
‐Amino Diheteroaryl ketones via Oxidative Domino Annulation of 2/4‐Methylazaarenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin‐Ke Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Xiao‐Yu Miao
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Hui‐Ru Jiang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Fei Ge
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Jia‐Chen Sun
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Rui‐Ying Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Qin Ouyang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Wei‐Yu Fan
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yan‐Ping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yuan‐Yuan Sun
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| |
Collapse
|
44
|
Wang K, Guan HR, Ren WL, Yang HT, Miao CB. Copper-Catalyzed Cascade Annulation of Malonate-Tethered O-Acyl Oximes with Cyclic 1,3-Dicarbonyl Compounds for the Synthesis of Spiro-Pentacyclic Derivatives. J Org Chem 2021; 86:12309-12317. [PMID: 34369761 DOI: 10.1021/acs.joc.1c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-catalyzed cascade annulation of malonate-tethered O-acyl oximes with cyclic 1,3-dicarbonyl compounds has been developed for the rapid synthesis of spiro-pentacyclic derivatives. This reaction allows the one-step formation of five C-C/N/O bonds and an angular tricyclic core under very mild conditions and shows excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
45
|
Wang J, Ba D, Yang M, Cheng G, Wang L. Regioselective Synthesis of 2,4-Diaryl-6-trifluoromethylated Pyridines through Copper-Catalyzed Cyclization of CF 3-Ynones and Vinyl Azides. J Org Chem 2021; 86:6423-6432. [PMID: 33905254 DOI: 10.1021/acs.joc.1c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with CF3-ynones is steadily achieved under mild conditions to furnish the versatile 2,4-diaryl-6-trifluoromethylated pyridine products, which are of great interest in medicinal chemistry. The generation of the vinyl iminophosphorane intermediates from vinyl azides through the Staudinger-Meyer reaction ensures the subsequent 1,4-addition process with CF3-ynones in this transformation.
Collapse
Affiliation(s)
- Jixin Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Da Ba
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Mengqi Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| |
Collapse
|
46
|
Singh D, Chowdhury SR, Pramanik S, Maity S. Molecular iodine enabled generation of iminyl radicals from oximes: A facile route to imidazo[1,2-a]pyridines and its regioselective C-3 sulfenylated products from simple pyridines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Xu Z, Xian N, Chen H, Deng G, Huang H. Cu‐Catalyzed
Cascade Cyclization of Ketoxime Acetates and Alkynals Enabling Synthesis of Acylpyrroles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
48
|
Ge D, Luo XL, Tang X, Pang CB, Wang X, Chu XQ. Metal-free [3 + 2 + 1] annulation of allylic alcohols, ketones, and ammonium acetate: radical-involving synthesis of 2,3-diarylpyridine derivatives. Org Biomol Chem 2021; 19:2277-2283. [PMID: 33624664 DOI: 10.1039/d0ob02593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A three-component [3 + 2 + 1] annulation strategy for the synthesis of biologically and pharmaceutically active 2,3-diarylpyridine derivatives by using a series of allylic alcohols, ketones, and ammonium acetate as substrates has been developed. The method proceeds efficiently under metal-free conditions, and the desired heterocycles could be obtained in a site-specific selectivity manner with good functional group tolerance.
Collapse
Affiliation(s)
- Danhua Ge
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xi Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Chao-Bin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
49
|
Wang J, Liu X, Wu Z, Li F, Zhang ML, Mi Y, Wei J, Zhou Y, Liu L. Ag-Catalyzed ring-opening of tertiary cycloalkanols for C-H functionalization of cyclic aldimines. Chem Commun (Camb) 2021; 57:1506-1509. [PMID: 33443251 DOI: 10.1039/d0cc07181a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We firstly describe a silver-catalyzed direct C-H functionalization of cyclic aldimines with cyclopropanols and cyclobutanols via a radical-mediated C-C bond cleavage strategy. The desired products were generated in decent yields with wide substrate scope under mild reaction conditions. In addition, a gram-scale reaction and synthetic transformation of the product were performed.
Collapse
Affiliation(s)
- Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Ming-Liang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yiman Mi
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Junhao Wei
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China. and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
50
|
Wei BY, Xie DT, Lai SQ, Jiang Y, Fu H, Wei D, Han B. Electrochemically Tuned Oxidative [4+2] Annulation and Dioxygenation of Olefins with Hydroxamic Acids. Angew Chem Int Ed Engl 2021; 60:3182-3188. [PMID: 33058402 DOI: 10.1002/anie.202012209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/23/2022]
Abstract
This work represents the first [4+2] annulation of hydroxamic acids with olefins for the synthesis of benzo[c][1,2]oxazines scaffold via anode-selective electrochemical oxidation. This protocol features mild conditions, is oxidant free, shows high regioselectivity and stereoselectivity, broad substrate scope of both alkenes and hydroxamic acids, and is compatible with terpenes, peptides, and steroids. Significantly, the dioxygenation of olefins employing hydroxamic acid is also successfully achieved by switching the anode material under the same reaction conditions. The study not only reveals a new reactivity of hydroxamic acids and its first application in electrosynthesis but also provides a successful example of anode material-tuned product selectivity.
Collapse
Affiliation(s)
- Bang-Yi Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Dong-Tai Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Sheng-Qiang Lai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Dian Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|