1
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Wang S, Li X, Lai C, Zhang Y, Lin X, Ding S. Recent advances in noble metal-based catalysts for CO oxidation. RSC Adv 2024; 14:30566-30581. [PMID: 39324044 PMCID: PMC11421417 DOI: 10.1039/d4ra05102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Carbon monoxide, one of the major pollutants in the air, is mainly produced due to the incomplete combustion of fossil fuels such as coal and oil. Among all the techniques developed for removing CO, catalytic oxidation has been considered one of the most effective approaches, and the commonly used catalysts include metal oxides and noble metals. Noble metal attracted extensive attention due to its good catalytic performance at low temperatures and high resistance to poisoning. The review summarizes the recent advances of noble metals including Pt, Pd, Au, Ru, Rh, and Ir in CO oxidation. The effect of support, metal doping, the particle size of noble metals, and the hydroxyl groups on CO oxidation is discussed. Besides, the metal-support interaction on the stability and activity is also involved in this review. Finally, the challenges and opportunities of supported noble metal catalysts in practical CO oxidation are proposed.
Collapse
Affiliation(s)
- Sheng Wang
- National Energy Group Science and Technology Research Institute Nanjing 210031 Jiangsu China
| | - Xiaoman Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Chengyue Lai
- Chengdu Academy of Environmental Sciences Chengdu 610072 China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Xiao Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| | - Shipeng Ding
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University Nanjing 210096 Jiangsu China
| |
Collapse
|
3
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
4
|
Ma C, Pan J, Chen C, Dong Y, Yao F, Wang F, Song M. Investigation into the roles of interfacial H 2O structure in catalytic oxidation of HCHO and CO over CuMnO 2 catalysts. J Environ Sci (China) 2024; 137:310-320. [PMID: 37980018 DOI: 10.1016/j.jes.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
The rapid deactivation of cost-effective MnO2-based catalysts in humid air limits their application in practice, and the identification of the role of water in an oxidation process is significant for developing water-resistant MnO2-based catalysts. Here, CuMnO2 showed a 20.3% HCHO conversion in 10 hr at room temperature in humid air with relative humidity of 40%, but deactivated in 3 hr in dry air. The excellent activity and stability of HCHO oxidation in humid air were attributed to the positive effect of H2O on HCHO oxidation to the H2O-HOCH2OH supermolecule assemblies via hydrogen bonds formed on CuMnO2. H2O-HOCH2OH supermolecule assemblies tend to be oxidized to carbonate, which is further oxidized to CO2. Furthermore, CuMnO2 exhibited a much poorer activity of CO oxidation in humid air, but the CO conversion was still 100% in 10 hr in dry air. H2O showed a competitive adsorption effect to CO on CuMnO2. CuMnO2 could be applied in HCHO elimination in humid air and CO elimination in dry air.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jushuang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Dong
- No. 52 Institute of China North Industries Group Yantai Branch Co. Ltd., Yantai 264000, China
| | - Feng Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wang C, Wang F, Shi J. FeO x-Modified Ultrafine Platinum Particles Supported on MgFe 2O 4 with High Catalytic Activity and Promising Stability toward Low-Temperature Oxidation of CO. Molecules 2024; 29:1027. [PMID: 38474539 DOI: 10.3390/molecules29051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Catalytic oxidation is widely recognized as a highly effective approach for eliminating highly toxic CO. The current challenge lies in designing catalysts that possess exceptional low-temperature activity and stability. In this work, we have prepared ultrafine platinum particles of ~1 nm diameter dispersed on a MgFe2O4 support and found that the addition of 3 wt.% FeOx into the 3Pt/MgFe2O4 significantly improves its activity and stability. At an ultra-low temperature of 30 °C, the CO can be totally converted to CO2 over 3FeOx-3Pt/MgFe2O4. High and stable performances of CO-catalytic oxidation can be obtained at 60 °C on 3FeOx-3Pt/MgFe2O4 over 35 min on-stream at WHSV = 30,000 mL/(g·h). Based on a series of characterizations including BET, XRD, ICP, STEM, H2-TPR, XPS, CO-DRIFT, O2-TPD and CO-TPD, it was disclosed that the relatively high activity and stability of 3FeOx-3Pt/MgFe2O4 is due to the fact that the addition of FeOx could facilitate the antioxidant capacity of Pt and oxygen mobility and increase the proportion of adsorbed oxygen species and the amounts of adsorbed CO. These results are helpful in designing Pt-based catalysts exhibiting higher activity and stability at low temperatures for the catalytic oxidation of CO.
Collapse
Affiliation(s)
- Chanchan Wang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Fen Wang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Jianjun Shi
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| |
Collapse
|
6
|
Shan R, Sheng Z, Hu S, Xiao H, Zhang Y, Zhang J, Wang L, Zhang C, Li J. Enhancing oxidation reaction over Pt-MnO 2 catalyst by activation of surface oxygen. J Environ Sci (China) 2023; 134:117-125. [PMID: 37673527 DOI: 10.1016/j.jes.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 09/08/2023]
Abstract
Formaldehyde (HCHO) and carbon monoxide (CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO2 under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO2 displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.
Collapse
Affiliation(s)
- Ruoting Shan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenteng Sheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Shuo Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
7
|
Cam TS, Anh NPQ, Duc BNM, Thuy NT, Lei J, Thanh NT, Huy NN. Synthesis of Inexpensive Ternary Metal Oxides by a Co-Precipitation Method for Catalytic Oxidation of Carbon Monoxide. Chem Asian J 2023; 18:e202300683. [PMID: 37747137 DOI: 10.1002/asia.202300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
By using a simple co-precipitation method, new Fe2 O3 -based nanocatalysts (samples) were synthesized. The samples were composites of two or three transition metal oxides, MOx (M=Fe, Mn, Co, Ni, and Cu). The average size of CuO crystallites in the composites composed of two oxide components (CuO-Fe2 O3 ) was about 14.3 nm, while in those composed of three (CuO-MnOx -Fe2 O3 ), the composite's phase compositions were almost in the amorphous form when annealing the sample at 300 °C. The latter sample had a specific surface area higher than that of the former, 207.9 and 142.1 g/m2 , respectively, explaining its higher catalytic CO oxidation. The CO conversion over the CuO-MnOx -Fe2 O3 -300 catalyst (1 g of catalyst, 2600 ppm of CO concentration in air, and 1.0 L/min of gas flow rate) begins at about 40 °C; the temperature for 50 % CO conversion (t50 ) is near 82 °C; and CO removal is almost complete at t99 ≈110 °C. The activity of the optimal sample was tested in different catalytic conditions, thereby observing a high durability of 99-100 % CO conversion at 130 °C. The obtained results were derived from XRD, FTIR, BET, SEM, elemental analysis and mapping, as well as catalytic experiments.
Collapse
Affiliation(s)
- Thanh Son Cam
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Nguyen Phan Quang Anh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Bui Nguyen Minh Duc
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Thi Thuy
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- School of Chemical and Environmental Engineering, International University, Ho Chi Minh City, 700000, Vietnam
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Nguyen Trung Thanh
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- Nanomaterial Laboratory, An Giang University, An Giang, 880000, Vietnam
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
8
|
Ge S, Chen Y, Tang X, Shen Y, Lou Y, Wang L, Guo Y, Llorca J. Preformed Pt Nanoparticles Supported on Nanoshaped CeO 2 for Total Propane Oxidation. ACS APPLIED NANO MATERIALS 2023; 6:15073-15084. [PMID: 37649836 PMCID: PMC10464920 DOI: 10.1021/acsanm.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Pt-based catalysts have been widely used for the removal of short-chain volatile organic compounds (VOCs), such as propane. In this study, we synthesized Pt nanoparticles with a size of ca. 2.4 nm and loaded them on various fine-shaped CeO2 with different facets to investigate the effect of CeO2 morphology on the complete oxidation of propane. The Pt/CeO2-o catalyst with {111} facets exhibited superior catalytic activity compared to the Pt/CeO2-r catalyst with {110} and {100} facets. Specifically, the turnover frequency (TOF) value of Pt/CeO2-o was 1.8 times higher than that of Pt/CeO2-r. Moreover, Pt/CeO2-o showed outstanding long-term stability during 50 h. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the excellent performance of Pt/CeO2-o is due to the prevalence of metallic Pt species, which promotes C-C bond cleavage and facilitates the rapid removal of surface formate species. In contrast, a stronger metal-support interaction in Pt/CeO2-r leads to easier oxidation of Pt species and the accumulation of intermediates, which is detrimental to the catalytic activity. Our work provides insight into the oxidation of propane on different nanoshaped Pt/CeO2 catalysts.
Collapse
Affiliation(s)
- Shasha Ge
- Key
Laboratory for Advanced and Research Institute of Industrial Catalysis,
School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Yufen Chen
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Xuan Tang
- Key
Laboratory for Advanced and Research Institute of Industrial Catalysis,
School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yali Shen
- Key
Laboratory for Advanced and Research Institute of Industrial Catalysis,
School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yang Lou
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Li Wang
- Key
Laboratory for Advanced and Research Institute of Industrial Catalysis,
School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key
Laboratory for Advanced and Research Institute of Industrial Catalysis,
School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
9
|
Shi H, Yang P, Huang L, Wu Y, Yu D, Wu H, Zhang Y, Xiao P. Single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading and high performance for toluene removal. J Colloid Interface Sci 2023; 641:972-980. [PMID: 36989823 DOI: 10.1016/j.jcis.2023.03.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The design and manufacture of high activity and thermal stability catalysts with minimal precious metal loading is essential for deep degradation of volatile organic compounds (VOCs). In this paper, a novel single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading capacity (0.06 wt%, denoted as 0.06Pt-SA) was fabricated via one-step co-precipitation method. The 0.06Pt-SA exhibited excellent toluene degradation activity of T90 = 169 °C, matched with the nanoparticle Pt-supported CeO2/Co3O4 catalyst with more than six times higher Pt loading (0.41 wt%, denoted as 0.41Pt-NP). Moreover, the ultra-long durability (toluene conversion remains 99% after 120 h stability test) and excellent toluene degradation ability in a wide space speed range of 0.06Pt-SA were superior to that of 0.41Pt-NP catalyst. The excellent performance was derived from the strong metal-support interaction (SMSI) between the single atomic Pt and the carrier, which induced more Pt0 and Ce3+ for oxygen activation and more Co3+ for toluene removal. The in situdiffuse reflectance infrared spectroscopy (DRIFTS) experiments confirmed that the conversion of intermediates was accelerated in the reaction process, thereby promoting the toluene degradation. Our results should inspire the exploitation of noble single-atomic modification strategy for developing the low cost and high performance VOCs catalyst.
Collapse
|
10
|
Cha X, Wang X, Huang M, Cai D, Sun K, Jiang J, Zhou SF, Zhan G. Fabrication of supported Pt/CeO 2 nanocatalysts doped with different elements for CO oxidation: theoretical and experimental studies. Dalton Trans 2023; 52:3661-3670. [PMID: 36847219 DOI: 10.1039/d3dt00181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Supported Pt/CeO2 catalysts have been widely used in carbon monoxide (CO) oxidation; however, the high oxygen vacancy formation energy (Evac) in the process leads to the poor performance of these catalysts. Herein, we explored different element (Pr, Cu, or N) doped CeO2 supports using Ce-based metal-organic frameworks (MOFs) as precursors via calcination treatment. The obtained CeO2 supports were used to load Pt nanoparticles. These catalysts were systematically characterized by various techniques, and they showed superior catalytic activity for CO oxidation compared to undoped catalysts which could be attributed to the formation of Ce3+, and high amounts of Oads/(Oads + Olat) and Ptδ+/Pttotal. Moreover, density functional theory calculations with on-site Coulomb interaction correction (DFT+U) were performed to provide atomic-scale insights into the reaction process by the Mars-van Krevelen (M-vK) mechanism, which revealed that the element-doped catalysts could simultaneously reduce the adsorption energies of CO and lower reaction energy barriers in the *OOCO associative pathway.
Collapse
Affiliation(s)
- Xingwen Cha
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Xueying Wang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Mingzhen Huang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Dongren Cai
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing, Jiangsu, 210042, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing, Jiangsu, 210042, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China.
| |
Collapse
|
11
|
Fu R, Fang T, Wang Z, Guo Y, Zhan W, Guo Y, Wang L. Boosting vinyl chloride combustion over Pt/WOx/ZrO2: regulating redox and acidity. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Sui C, Ma XY, Fu WH, Zeng SP, Xie RR, Zhang ZP. Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: a mini review. REV INORG CHEM 2023. [DOI: 10.1515/revic-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Volatile organic compounds (VOCs) are an important class of environmental pollutants, and there is much interest in China to eliminate such pollutants. Noble metal catalysts have long been a family of catalysts with high efficiency and good low-temperature catalytic activity. As a representative of the noble metals, Pt has been widely used. This paper reviews the research trend of Pt-based catalysts for the catalytic oxidation of VOCs, and it compares several important components of Pt-based catalysts. The size of Pt particles, supported carriers, and reaction mechanism are reviewed. Toluene in VOCs is the main research subject. The activity, stability, water resistance, and selectivity of a series of Pt-based catalysts are summarized.
Collapse
Affiliation(s)
- Chao Sui
- Heilongjiang Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering , Mudanjiang Normal University , Mudanjiang 157000 , China
| | - Xiang Yu Ma
- College of Chemistry and Chemical Engineering , Mudanjiang Normal University , Mudanjiang , China
| | - Wen Hui Fu
- College of Chemistry and Chemical Engineering , Mudanjiang Normal University , Mudanjiang , China
| | - Shi Ping Zeng
- College of Chemistry and Chemical Engineering , Mudanjiang Normal University , Mudanjiang , China
| | - Rui Rui Xie
- College of Chemistry and Chemical Engineering , Mudanjiang Normal University , Mudanjiang , China
| | - Zhi Ping Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering , University of Science and Technology , Harbin 150040 , China
| |
Collapse
|
13
|
Huang Z, Cao Y, Chen D, Zhang LL, Li H. Mechanistic insight into surface oxygen species of the polyoxometalate-supported Pd single-atom catalysts for highly efficient CO oxidation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Zhang J, Shan R, Xiao H, Hu S, Sheng Z, Qin X, Zhang Y, Wang L, Li J, Zhang C. Electronic Modification by Transitional Metal Dopants to Tune the Oxidation Activity of Pt-CeO 2-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17331-17340. [PMID: 36354790 DOI: 10.1021/acs.est.2c07099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While utilization of transitional metals as a promoter has been extensively studied to enhance the activity of Pt-based catalysts for the oxidation of formaldehyde (HCHO), there is still a lack of well elucidated property-function relationship for the rational selection of a promoter in catalyst design. Herein, we modified a Pt/CeO2 catalyst with two transitional metal dopants (i.e., Mn and Cu) that showed negligible influence on the physical structure of the Pt-CeO2 matrix but distinct effects on the activity of the catalyst. Complementary characterizations combined with density functional theory modeling revealed that the transitional metal dopants significantly modified the electronic structure of the catalyst and shifted the d-band of Pt to higher energy with different extents, which may tune the bonding strength of HCHO/intermediates with the Pt-CeO2 interface domain. The catalyst with moderate bonding strength (i.e., Pt-Mn/CeO2) displayed the highest reactivity under the ambient condition, while Pt-Cu/CeO2 with the highest bonding strength showed a dramatically decreased activity. No correlation was observed between the abundancy of the active oxygen and catalytic activity, likely due to the oxygen supply having a much higher rate than the rate-determining step. This work contributes to the elucidation about the property-function relationship of a transitional metal dopant in Pt-based catalysts for the oxidation of HCHO.
Collapse
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoting Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuo Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenteng Sheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhang Q, Liu J, Wang C, Guo Y, Zhan W, Wang L, Gong X, Guo Y. Vinyl chloride catalytic combustion on Pt/CeO 2: Tuning Pt chemical state to promote Cl removing. CHEMOSPHERE 2022; 307:135861. [PMID: 35948090 DOI: 10.1016/j.chemosphere.2022.135861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Supported Pt catalysts usually produce chlorinated byproducts during chlorinated volatile organic compounds (CVOCs) combustion, the removal of formed surface chlorine species is the key to improve the activity, selectivity and stability. In this paper, the Pt chemical state is adjusted by the interaction between Pt and CeO2 through controlling the morphology of CeO2, which further affects the catalytic performance of VC combustion. For Pt/CeO2-octahedron, the weak interaction between Pt and CeO2 results in the formation of PtO2, facilities VC adsorption and C-Cl bonds cleavage and becomes a key active site to accommodate the dissociated Cl species. While the strong interaction leads to the formation of PtxCe1-xO2-σ solid solution on Pt/CeO2-rod has relative lower ability in Cl species removal compared with PtO2. Density functional theory (DFT) calculations also confirms that the introduced Pt species reduces the concentration of Cl species on the surface as well as the chlorinated-byproducts. Hence, Pt/CeO2-octahedron outperformed Pt/CeO2-rod and Pt/CeO2-cube with 90% VC conversion at 280 °C. Furthermore, under the same VC conversion (90%), the concentration of chlorinated byproducts on Pt/CeO2-octahedron was only 4% than that of Pt/CeO2-rod.
Collapse
Affiliation(s)
- Qifeng Zhang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiyuan Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xueqing Gong
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Kim SB, Shin JH, Kim GJ, Hong SC. Promoting Metal–Support Interaction on Pt/TiO 2 Catalyst by Antimony for Enhanced Carbon Monoxide Oxidation Activity at Room Temperature. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Su Bin Kim
- Environmental Technology Division, Korea Testing Laboratory, 87 Digital-ro 26-gil, Guro-gu, Seoul08389, South Korea
| | - Jung Hun Shin
- Department of Environmental Energy Engineering, Graduate School of Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16227, South Korea
| | - Geo Jong Kim
- Chemical & Process Technology Division, Korea Research Insititute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon34114, South Korea
| | - Sung Chang Hong
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16227, South Korea
| |
Collapse
|
17
|
Bai P, Zhou T, Wang X, Liu X, Wang Y, Wang Y, Muhumuza E, Zhang Y, Wu P. Remarkably improved performance of Au-Pd/γ-Al2O3 catalyst in benzyl alcohol oxidation by mercapto-propyl-trimethoxysilane modification. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Pan Y, Xu L, He W, Li H, Chen W, Sun Z. Optimizing the synergy between alloy and alloy-oxide interface for CO oxidation in bimetallic catalysts. NANOSCALE 2022; 14:7303-7313. [PMID: 35532914 DOI: 10.1039/d2nr01171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Creating synergetic metal-oxide interfaces is a promising strategy to promote the catalytic performance of heterogeneous catalysts. However, this strategy has been mainly applied to monometallic catalysts, while scarcely applied to alloy catalysts. In this work, we present a comprehensive study on the synergetic alloy-oxide interfaces in the bimetallic Pt-Co/Al2O3 catalysts for CO oxidation. A series of Pt1Cox/Al2O3 catalysts with various Co/Pt molar ratios with x ranging from 0.5 to 3.8 was synthesized via a facile wet-chemistry strategy. Among them, the Pt1Co0.5/Al2O3 catalyst exhibits the best catalytic performance for CO oxidation, with the lowest CO complete conversion temperature of -10 °C and the highest mass specific rate of 2.61 (mol CO) h-1 (g Pt)-1. From in situ X-ray absorption fine structure and diffuse reflectance infrared Fourier-transform spectroscopy studies, the superior catalytic performance of Pt1Co0.5/Al2O3 originates from the optimal length of the three-dimensional alloy-oxide perimeter sites. We further extended this strategy to other bimetallic systems of Pt-Fe and Pt-Ni, which also show similar structural properties and remarkable promotional effects on the catalytic activity.
Collapse
Affiliation(s)
- Ya Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Liuxin Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Hongmei Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wei Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
19
|
Kang B, Vincent JL, Lee Y, Ke L, Crozier PA, Zhu Q. Modeling surface spin polarization on ceria-supported Pt nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255002. [PMID: 35354123 DOI: 10.1088/1361-648x/ac62a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO2-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO2-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.
Collapse
Affiliation(s)
- Byungkyun Kang
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| | - Joshua L Vincent
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Yongbin Lee
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Liqin Ke
- Ames Laboratory, US Department of Energy, Ames, IA 50011, United States of America
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, United States of America
| | - Qiang Zhu
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, United States of America
| |
Collapse
|
20
|
Chen W, Cao J, Fu W, Zhang J, Qian G, Yang J, Chen D, Zhou X, Yuan W, Duan X. Molecular‐Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angew Chem Int Ed Engl 2022; 61:e202200190. [DOI: 10.1002/anie.202200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Junbo Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenzhao Fu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jia Yang
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim 7491 Norway
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim 7491 Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
21
|
Wang L, Peng H, Xie WQ, Shi SL, Yuan MW, Zhao D, Wang SH, Chen C. Microwave pyrolysis-engineered MOFs derivatives for efficient preferential CO oxidation in H2-rich stream. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Liang Y, Zhao B, Wang J, Zhao M, Cheng Y. Enhanced performance of Pt-based diesel oxidation catalyst via defective MnOx: The role of Pt/MnOx interface. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Chen W, Cao J, Fu W, Zhang J, Qian G, Yang J, Chen D, Zhou X, Yuan W, Duan X. Molecular‐Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Junbo Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenzhao Fu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jia Yang
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim 7491 Norway
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim 7491 Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
24
|
Fan J, Sun Y, Fu M, Li J, Ye D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO 2 catalysts for enhancing the toluene oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127505. [PMID: 34736184 DOI: 10.1016/j.jhazmat.2021.127505] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metal support interactions modulation is one of the effective strategies to enhance the catalytic performance. Herein, we reported that modulating metal support interactions by switching the strength (CO, H2, NH3) and temperature (200, 300, 400 °C) of reducing gases is a facile way to improve the catalytic performance of Pt/CeO2 for toluene oxidation. The distinct reduction treatments will stepwise enhance the reducibility, ratio of Pt0 and oxygen vacancy concentration, which dominated the activity. The metal support interactions modulation can significantly affect toluene deep oxidation (from benzoate to formate or monodentate carbonate) via enhancing the mobility of surface/lattice oxygen and activation ability towards O2 molecules, since the main activation sites for O2 molecules expand from Pt0 sites to oxygen vacancies and Pt0 sites with temperature increasing.
Collapse
Affiliation(s)
- Jie Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhang Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Jiaqi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China.
| |
Collapse
|
25
|
Sarkodie B, Shen B, Asinyo B, Hu Y, Jiang J, Li C. Highly efficient Au/Fe 2O 3 for CO oxidation: The vital role of spongy Fe 2O 3 toward high catalytic activity and stability. J Colloid Interface Sci 2022; 608:2181-2191. [PMID: 34815090 DOI: 10.1016/j.jcis.2021.09.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Supported gold catalysts have drawn great attention for many decades due to their outstanding performance in remedying the environment from carbon monoxide (CO) pollution. In this study, due to the large surface area of spongy Fe2O3, fabricated by salt-assisted ultrasonic spray pyrolysis, a considerable amount of Au was loaded on spongy Fe2O3 compared to low-surface-area non-spongy Fe2O3. It is seen that the spongy Fe2O3 catalyst loaded with Au has an interface that can be extremely active for CO desorption and O2 activation. That means it has high catalytic activity in CO oxidation than non-spongy and low surface area Fe2O3 loaded with Au. Also, the incorporation of Au in low alkaline condition further enhances the interaction between Au and Fe2O3, providing more active sites. This made the catalyst to have better activity, good stability over 60 hrs, and there was no carbonate on its surface. It had full conversion at 30 °C on 120 L g-1h-1 with high TOF (2.2 s-1).
Collapse
Affiliation(s)
- Bismark Sarkodie
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bolei Shen
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Benjamin Asinyo
- Department of Industrial Art, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Yanjie Hu
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiechao Jiang
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Zhou Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. Pt-Co nanoparticles supported on hollow multi-shelled CeO 2 as a catalyst for highly efficient toluene oxidation: Morphology control and the role of bimetal synergism. J Colloid Interface Sci 2022; 608:48-59. [PMID: 34624765 DOI: 10.1016/j.jcis.2021.09.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022]
Abstract
A series of hollow multi-shelled CeO2 (HoMS-CeO2) support materials with tunable shell numbers were fabricated and applied to the catalytic oxidation of toluene. HoMS-CeO2 possess much higher catalytic activity (T90 = 236 ℃) than hollow CeO2 with only a single shell (h-CeO2) (T90 = 275℃). The porous multiple-shelled structure has a higher SBET, which strongly promotes gas distribution and provides more active sites. The superiority of this kind of structure was also verified by comparing h-Co3O4 and HoMS-Co3O4. Furthermore, Pt-Co bimetallic nanoparticles were loaded onto HoMS-CeO2. The synergistic effect between Pt and Co was verified by XPS and O2-TPD, which was observed to allow electron transfer between Pt and Co and thus regulate the electronic state of the Pt. Compared with Pt alone, Pt-Co bimetallic nanoparticles could stronglypromotethe activation of O2and oxygen mobility, as revealed by a much higher Oads content and a lower oxygen desorption temperature. Of the catalysts prepared in this study, the 1 wt% PtCo3/CeO2 catalyst was found to be the most suitable for toluene oxidation owing to its excellent activity (T90 = 158 ℃), long-term stability, and water resistance. Finally, in situ DRIFTS was employed to investigate mechanism during toluene oxidation and the possible reaction pathway was proposed.
Collapse
Affiliation(s)
- Yuanbo Zhou
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Zhang F, Wu C, Wang S, Wang S, Li T, Zou L, Yu H, Yin H. Tailoring the activity and selectivity of Rh/SiO2 in the selective hydrogenation of phenol by CoOx promotion. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02324a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although supported Rh nanoparticles (NPs) are one of the best catalysts for the selectivity hydrogenation of phenol to cyclohexanol, they still suffer from poor selectivity problems. In this study, we...
Collapse
|
28
|
Fu M, Yang W, Yang C, Zhang Y, Shen C. Mechanistic insights into CoOx–Ag/CeO2 catalysts for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01599k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CoOx–Ag/CeO2 catalysts achieve satisfactory FDCA yield from HMF, and a fundamental understanding about the reaction mechanism is provided.
Collapse
Affiliation(s)
- Mengchen Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Weiyao Yang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Chenyu Yang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Yiwen Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Chun Shen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
29
|
Xie S, Tan W, Wang C, Arandiyan H, Garbrecht M, Ma L, Ehrlich SN, Xu P, Li Y, Zhang Y, Collier S, Deng J, Liu F. Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Gao F, Liu A, Tan W, Hu B, Gong R, Cheng X, Liu F, Chen G, Dong L. Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chem Commun (Camb) 2022; 58:7984-7987. [DOI: 10.1039/d2cc02671f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report that Pt single atoms embedded on a disordered TiO2 surface have a weaker affinity for CO than those supported on a perfect TiO2 surface, thus generating much better CO oxidation activity.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Annai Liu
- Institute of Engineering Technology, Sinopec Catalyst Co. Ltd., Sinopec Group, 13 Xingguang 5th Avenue, Beijing 101111, P. R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bing Hu
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ruihan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing Cheng
- College of Environmental and Energy Engineering, Beijing University of Technology, Pingle yuan 100, Beijing 100124, P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, USA
| | - Ge Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Pingle yuan 100, Beijing 100124, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Zhang J, Qin X, Chu X, Chen M, Chen X, Chen J, He H, Zhang C. Tuning Metal-Support Interaction of Pt-CeO 2 Catalysts for Enhanced Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16687-16698. [PMID: 34847319 DOI: 10.1021/acs.est.1c06400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-support interaction (MSI) has been widely recognized to be playing a pivotal role in regulating the catalytic activity of various reactions. In this work, the degree of MSI between Pt and CeO2 support was finely tuned by adjusting the activation condition, and the obtained catalysts were tested for the oxidative abatement of CO and HCHO under ambient conditions. The characterization of catalysts shows that activation of strongly interacting Pt-CeO2 at higher temperatures by H2 leads to a weaker MSI with increased electron density of Pt, and this modification of local electronic properties is demonstrated to result in enhanced O2 adsorption/activation to prevent the CO self-poisoning effect, while it abates the activity of CO adsorption/activation and oxidation of adsorbed CO. The Pt-CeO2 catalyst with a moderate MSI, which is able to balance each step in the catalytic cycle over Pt and Pt-CeO2 interface domains, displays the highest activity for CO/HCHO oxidation under ambient conditions.
Collapse
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Ding J, Liu Y, Li A, Chen Q, Dong P, Mao J, Wei X. Highly dispersed Cr oxygenated species on Pt nanowire assemblies for enhanced electrocatalytic methanol oxidation. Chem Commun (Camb) 2021; 58:799-802. [PMID: 34927635 DOI: 10.1039/d1cc05660c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, Cr oxygenated species dispersed on Pt nanowire assemblies (PtCrOX NWs) were successfully prepared for the methanol oxidation reaction by a metal precursor dilution strategy. Notably, the PtCrOX NWs catalyst exhibits excellent performance for electrocatalytic methanol oxidation. Density functional theory results revealed that the doped Cr oxygenated species, which moderated the electronic structure of the Pt atoms, can significantly decrease the free energy of COOH* formation, thus leading to superior methanol oxidation performance.
Collapse
Affiliation(s)
- Jun Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Panpan Dong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Xianwen Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
33
|
Li Y, Zhang P, Xiong J, Wei Y, Chi H, Zhang Y, Lai K, Zhao Z, Deng J. Facilitating Catalytic Purification of Auto-Exhaust Carbon Particles via the Fe 2O 3{113} Facet-dependent Effect in Pt/Fe 2O 3 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16153-16162. [PMID: 34797981 DOI: 10.1021/acs.est.1c05908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purification efficiency of auto-exhaust carbon particles in the catalytic aftertreatment system of vehicle exhaust is strongly dependent on the interface nanostructure between the noble metal component and oxide supports. Herein, we have elaborately synthesized the catalysts (Pt/Fe2O3-R) of Pt nanoparticles decorated on the hexagonal bipyramid α-Fe2O3 nanocrystals with co-exposed twelve {113} and six {104} facets. The area ratios (R) of co-exposed {113} to {104} facets in α-Fe2O3 nanocrystals were adjusted by the fluoride ion concentration in the hydrothermal method. The strong Pt-Fe2O3{113} facet interaction boosts the formation of coordination unsaturated ferric sites for enhancing adsorption/activation of O2 and NO. Pt/Fe2O3-R catalysts exhibited the Fe2O3{113} facet-dependent performance during catalytic purification of soot particles in the presence of H2O. Among the catalysts, the Pt/Fe2O3-19 catalyst exhibits the highest catalytic activities (T50 = 365 °C, TOF = 0.13 h-1), the lowest apparent activation energy (69 kJ mol-1), and excellent catalytic stability during soot purification. Combined with the results of characterizations and density functional theory calculations, the catalytic mechanism is proposed: the active sites located at the Pt-Fe2O3{113} interface can boost the key step of NO oxidation to NO2. The crystal facet engineering is an effective strategy to obtain efficient catalysts for soot purification in practical applications.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Hongjie Chi
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Yilin Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Kezhen Lai
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, P. R. China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
34
|
Yu H, Wu C, Yuan X, Yang F, Zhang F, Yin H. Hollow and mesoporous aluminosilica-encapsulated Pt-CoO x for the selective hydrogenation of substituted nitroaromatics. Chem Commun (Camb) 2021; 57:9116-9119. [PMID: 34498615 DOI: 10.1039/d1cc02777h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow and mesoporous aluminosilica nanoreactors (HMANs) with Pt-CoOx cores (∼4.7 nm) and hollow aluminosilica shells (∼50 nm) were designed by a selective etching method. The Pt-CoOx@HMANs demonstrate a greatly enhanced activity and selectivity for the hydrogenation of various substituted nitroaromatics compared to Pt@HMANs and Pt-CoOx@SiO2.
Collapse
Affiliation(s)
- Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China.
| | - Chunzheng Wu
- College of Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Xuemin Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China.
| | - Fan Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China.
| | - Fei Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China.
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China.
| |
Collapse
|
35
|
Xiao Y, Li H, Xie K. Activating Lattice Oxygen at the Twisted Surface in a Mesoporous CeO
2
Single Crystal for Efficient and Durable Catalytic CO Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yongchun Xiao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
- Dalian National Laboratory For Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Advanced Energy Science and Technology Guangdong Laboratory 29 Sanxin North Road Huizhou 116023 China
| |
Collapse
|
36
|
Xiao Y, Li H, Xie K. Activating Lattice Oxygen at the Twisted Surface in a Mesoporous CeO
2
Single Crystal for Efficient and Durable Catalytic CO Oxidation. Angew Chem Int Ed Engl 2021; 60:5240-5244. [DOI: 10.1002/anie.202013633] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yongchun Xiao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
- Dalian National Laboratory For Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Advanced Energy Science and Technology Guangdong Laboratory 29 Sanxin North Road Huizhou 116023 China
| |
Collapse
|
37
|
Yan X, Gan T, Shi S, Du J, Xu G, Zhang W, Yan W, Zou Y, Liu G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potassium-incorporated manganese oxide is demonstrated as an efficient support for fabricating highly active and stable Pt catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Xuelan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guohao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxiang Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
38
|
Yu H, Yu Z, Yang F, Yan X, Yin H. Enhanced strong metal–support interactions between Pt and WO 3–x nanowires for the selective hydrogenation of p-chloronitrobenzene. NEW J CHEM 2021. [DOI: 10.1039/d1nj03336k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pt/WO3–x nanocatalysts demonstrate significantly enhanced catalytic performance due to the strong interaction between Pt and WO3–x nanowires.
Collapse
Affiliation(s)
- Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Zhiyong Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Fan Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Xuedong Yan
- Ningbo Polytechnic, 388 East Lushan Road, Ningbo, Zhejiang, 315800, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
39
|
Sun Y, Gao Y, He C, Song W, Jiang Z, Albilali R, Bai B. Efficient and stable low-temperature CO oxidation over Pt/In–SnO 2 composite triggered by abundant oxygen vacancies and adsorption sites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In ion doping can greatly improve the active oxygen migration ability in the Pt/In–SnO2 catalyst, which is beneficial to CO oxidation at low temperature.
Collapse
Affiliation(s)
- Yukun Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Water and Environment
- Chang'an University
- Xi'an 710064
| | - Yang Gao
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- P.R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- P.R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P.R. China
| | - Reem Albilali
- Department of Chemistry
- College of Science
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Water and Environment
- Chang'an University
- Xi'an 710064
| |
Collapse
|
40
|
Wei X, Ma Z, Mu X, Zhang Q, Hu B. Synergistic effect of hematite facet and Pd nanocluster for enhanced acetylene dicarbonylation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Selective hydrogenation of cinnamaldehyde with Ni Fe1-Al2O4+ composite oxides supported Pt catalysts: C O versus C C selectivity switch by varying the Ni/Fe molar ratios. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Xiao Q, Wang Y, Zhao ZJ, Pei C, Chen S, Gao L, Mu R, Fu Q, Gong J. Defect-mediated reactivity of Pt/TiO2 catalysts: the different role of titanium and oxygen vacancies. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9798-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Ding J, Li L, Wang Y, Li H, Yang M, Li G. Topological transformation of LDH nanosheets to highly dispersed PtNiFe nanoalloys enhancing CO oxidation performance. NANOSCALE 2020; 12:14882-14894. [PMID: 32638777 DOI: 10.1039/d0nr02272a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly dispersed nanoalloys with a tailored metal-oxide interface are pivotal in developing advanced catalysts with superior performance for applications. Herein, a series of highly dispersed Pt/NiFeAl nanoalloys on amorphous supports were successfully fabricated by a topological transformation of layered-double-hydroxide nanosheets. With increasing reduction temperature, samples Pt/NiFeAl-x (x = reduction temperature) showed a progressive transformation from Pt/NiFeAl-LDH to a mixture (Pt, NiFe alloys, FeOy, and NiOy) supported on amorphous Al2O3, which eventually transformed to atomically dispersed PtNiFe alloys supported on amorphous Al2O3. Systematic sample characterization demonstrates that amorphous alumina-supported PtNiFe nanoalloys are merited by excellent redox ability, outstanding O2 activation ability, and moderate CO adsorption strength. When tested as catalysts for CO oxidation, all samples have demonstrated an apparent interfacial effect on catalytic performance, among which Pt/NiFeAl-600 shows a strikingly high CO oxidation activity at low-temperatures coupled with a broader operation temperature window (i.e. CO conversion >99.0%, 100-400 °C). Such a topological transformation strategy has proven applicable for generating atomically dispersed nanoalloys on amorphous supports for catalytic applications.
Collapse
Affiliation(s)
- Junfang Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Ye Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Min Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
44
|
Liu G, Walsh AG, Zhang P. Synergism of Iron and Platinum Species for Low-Temperature CO Oxidation: From Two-Dimensional Surface to Nanoparticle and Single-Atom Catalysts. J Phys Chem Lett 2020; 11:2219-2229. [PMID: 32109069 DOI: 10.1021/acs.jpclett.9b03311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CO oxidation is one of the most studied reactions in heterogeneous catalysis. It is present in air cleaning and automotive emission control. It also participates in the removal of CO from streams of hydrogen used in fuel cells. Because of the competitive adsorption of CO and O2 over active sites, the use of Pt-based catalysts for low-temperature CO oxidation remains a challenge. Recently, great progress has been made with catalysts containing Pt-Fe species because of the contribution of Fe species to O2 activation. The structure-activity relationship and reaction mechanisms have been investigated with various Pt-Fe catalysts. In this Perspective, we give a summary of the recent advances of low-temperature CO oxidation over Pt-Fe catalysts with a focus on the synergistic effect of Pt and Fe species in the CO and O2 activation of catalytic reactions. Future prospects for the preparation of highly effective Pt-Fe catalysts are also proposed.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| | - Andrew G Walsh
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| |
Collapse
|
45
|
Wang T, Zhou RX. Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce,Zr,La)O 2 catalysts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113782. [PMID: 31855674 DOI: 10.1016/j.envpol.2019.113782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Rh/(Ce,Zr,La)O2 (CZL) catalysts with different Ce/Zr molar ratios of 1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 and 0:1 were prepared. The relationship of microstructure, dynamic oxygen mobility and the redox properties with catalytic activity for HC, CO and NOx eliminations were investigated. The results demonstrate that CZL mixed oxide with Ce/Zr ratio of 1:1 exhibits the largest OSC values as 904.3 umol·g-1 and structural defects. The increase of oxygen vacancies and structural defects would promote the interaction between Rh species and CZL mixed oxides, which further promotes the stabilization of RhOx particles and enhances the oxygen storage/release ability. Rh/CZLx catalysts with Ce/Zr molar ratio of 1:1-1:4 exhibit better catalytic activity and wider dynamic operation window due to their higher DOSC.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, PR China
| | - Ren-Xian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, PR China.
| |
Collapse
|
46
|
Wei X, Ma Z, Lu J, Mu X, Hu B. The highly efficient and selective dicarbonylation of acetylene catalysed by palladium nanosheets supported on activated carbon. NEW J CHEM 2020. [DOI: 10.1039/d0nj01173h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An ultrathin Pd nanosheet-supported heterogeneous catalyst, PdCO/AC, with exposed (111) crystal plane was synthesized, and it shows superior catalytic reactivity (∼43.8%) and selectivity (∼99.0%) for the dicarbonylation of acetylene and CO.
Collapse
Affiliation(s)
- Xuemei Wei
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Zhanwei Ma
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Jinzhi Lu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xinyuan Mu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Hu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
47
|
Wei X, Ma Z, Lu J, Mu X, Hu B. Strong metal–support interactions between palladium nanoclusters and hematite toward enhanced acetylene dicarbonylation at low temperature. NEW J CHEM 2020. [DOI: 10.1039/c9nj05493f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A four-fold increase in palladium-based acetylene dicarbonylation activity was obtained at low temperature due to the strong metal–support interaction between Pd and the earth-abundant α-Fe2O3 material.
Collapse
Affiliation(s)
- Xuemei Wei
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Zhanwei Ma
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Jinzhi Lu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xinyuan Mu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Hu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
48
|
Zhu Q, Li H, Wang Y, Zhou Y, Zhu A, Chen X, Li X, Chen Y, Lu H. Novel metallic electrically heated monolithic catalysts towards VOC combustion. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01477b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metallic electrically heated monolithic catalysts with dual-function, high activity, fast response, small volume, changeable shape and energy conservation properties.
Collapse
Affiliation(s)
- Qiulian Zhu
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Hao Li
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Yue Wang
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Ying Zhou
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Anming Zhu
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xiao Chen
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xiaonian Li
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Yinfei Chen
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| | - Hanfeng Lu
- Innovation team of air pollution control
- Institute of Catalytic Reaction Engineering
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|