1
|
Di Costanzo LF, Sgueglia G, Orlando C, Polentarutti M, Leone L, La Gatta S, De Fenza M, De Gioia L, Lombardi A, Arrigoni F, Chino M. Structural insights into temperature-dependent dynamics of METPsc1, a miniaturized electron-transfer protein. J Inorg Biochem 2024; 264:112810. [PMID: 39689412 DOI: 10.1016/j.jinorgbio.2024.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K. Our findings reveal that METPsc1, composed of two similar halves stabilized by intramolecular hydrogen bonds, exhibits a unique "clothespin-like" recoil mechanism. This allows it to adapt to metal ions of varying radii, mirroring the flexibility observed in natural rubredoxins. High-resolution crystallography and molecular dynamics simulations unveil concerted backbone motions and subtle temperature-dependent shifts in side-chain conformations, particularly for residues involved in crystal packing. Notably, CdS bond lengths increase with temperature, correlating with anisotropic motions of the sulfur atoms involved in second-shell hydrogen bonding. This suggests a dynamic role of protein matrix upon redox cycling. These insights into METPsc1 highlight its potential for catalysis and contribute to the designing of artificial metalloproteins with functional plasticity.
Collapse
Affiliation(s)
- Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, NA, Italy.
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Carla Orlando
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy.
| |
Collapse
|
2
|
Kosko RM, Kuphal KL, Salamatian AA, Bren KL. Engineered metallobiocatalysts for energy-relevant reactions. Curr Opin Chem Biol 2024; 84:102545. [PMID: 39591928 DOI: 10.1016/j.cbpa.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Engineering metallobiocatalysts is a promising approach to addressing challenges in energy-relevant electrocatalysis and photocatalysis. The design freedom provided by semisynthetic and fully synthetic approaches to catalyst design allows researchers to demonstrate how structural modifications can improve selectivity and activity of biocatalysts. Furthermore, the provision of a superstructure in many metallobiocatalysts facilitates active-site microenvironment engineering. Recurring themes include the role of the biomolecular scaffold in enhancing reactivity in water and catalyst robustness, the impact of the outer sphere on reactivity, and the importance of tuning system components in full system optimization. In this perspective, recent strategies to design and modify novel biocatalysts, understand proton and electron transfer mechanisms, and tune system activity by modifying catalysts and system conditions are highlighted within the field of energy-related catalysis. Opportunities in this field include developing robust structure-function relationships to support approaches to engineering second-sphere interactions and identifying ways to enhance biocatalyst activity over time.
Collapse
Affiliation(s)
- Ryan M Kosko
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kaye L Kuphal
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| |
Collapse
|
3
|
Wertz AE, Marguet SC, Turro C, Shafaat HS. Targeted Modulation of Photocatalytic Hydrogen Evolution Activity by Nickel-Substituted Rubredoxin through Functionalized Ruthenium Phototriggers. Inorg Chem 2024; 63:20438-20447. [PMID: 39423027 DOI: 10.1021/acs.inorgchem.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Light-driven hydrogen evolution is a promising means of sustainable energy production to meet global energy demand. This study investigates the photocatalytic hydrogen evolution activity of nickel-substituted rubredoxin (NiRd), an artificial hydrogenase mimic, covalently attached to a ruthenium phototrigger (RuNiRd). By systematically modifying the para-substituents on Ru(II) polypyridyl complexes, we sought to optimize the intramolecular electron transfer processes within the RuNiRd system. A series of electron-donating and electron-withdrawing groups were introduced to tune the photophysical, photochemical, and electrochemical properties of the ruthenium complexes. Our findings reveal that electron-donating substituents can increase the hydrogen evolution capabilities of the artificial enzyme to a point; however, the complexes with the most electron-donating substituents suffer from short lifetimes and inefficient reductive quenching, rendering them inactive. The present work highlights the intricate balance required between driving force, lifetime, and quenching efficiency for effective light-driven catalysis, providing valuable insights into the design of artificial enzyme-photosensitizer constructs.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Isegawa M. Metal- and ligand-substitution-induced changes in the kinetics and thermodynamics of hydrogen activation and hydricity in a dinuclear metal complex. Dalton Trans 2024; 53:5966-5978. [PMID: 38462977 DOI: 10.1039/d4dt00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catalytic function in organometallic complexes is achieved by carefully selecting their central metals and ligands. In this study, the effects of a metal and a ligand on the kinetics and thermodynamics of hydrogen activation, hydricity degree of the hydride complex, and susceptibility to electronic oxidation in bioinspired NiFe complexes, [NiIIX FeII(Cl)(CO)Y]+ ([NiFe(Cl)(CO)]+; X = N,N'-diethyl-3,7-diazanonane-1,9-dithiolato and Y = 1,2-bis(diphenylphosphino)ethane), were investigated. The density functional theory calculations revealed that the following order thermodynamically favored hydrogen activation: [NiFe(CO)]2+ > [NiRu(CO)]2+ > [NiFe(CNMe)]2+ ∼ [PdRu(CO)]2+ ∼ [PdFe(CO)]2+ ≫ [NiFe(NCS)]+. Moreover, the reverse order thermodynamically favored the hydricity degree.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Trogadas P, Xu L, Coppens M. From Biomimicking to Bioinspired Design of Electrocatalysts for CO 2 Reduction to C 1 Products. Angew Chem Int Ed Engl 2024; 63:e202314446. [PMID: 37795670 PMCID: PMC10962605 DOI: 10.1002/anie.202314446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The electrochemical reduction of CO2 (CO2 RR) is a promising approach to maintain a carbon cycle balance and produce value-added chemicals. However, CO2 RR technology is far from mature, since the conventional CO2 RR electrocatalysts suffer from low activity (leading to currents <10 mA cm-2 in an H-cell), stability (<120 h), and selectivity. Hence, they cannot meet the requirements for commercial applications (>200 mA cm-2 , >8000 h, >90 % selectivity). Significant improvements are possible by taking inspiration from nature, considering biological organisms that efficiently catalyze the CO2 to various products. In this minireview, we present recent examples of enzyme-inspired and enzyme-mimicking CO2 RR electrocatalysts enabling the production of C1 products with high faradaic efficiency (FE). At present, these designs do not typically follow a methodical approach, but rather focus on isolated features of biological systems. To achieve disruptive change, we advocate a systematic design methodology that leverages fundamental mechanisms associated with desired properties in nature and adapts them to the context of engineering applications.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUnited Kingdom
| | - Linlin Xu
- EPSRC “Frontier Engineering” Centre for Nature Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUnited Kingdom
| | - Marc‐Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUnited Kingdom
| |
Collapse
|
6
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
7
|
Wertz AE, Teptarakulkarn P, Stein RE, Moore PJ, Shafaat HS. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform. Biochemistry 2023; 62:2622-2631. [PMID: 37579005 DOI: 10.1021/acs.biochem.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Nickel-substituted rubredoxin (NiRd) from Desulfovibrio desulfuricans has previously been shown to act as both a structural and functional mimic of the [NiFe] hydrogenase. However, improvements both in turnover frequency and overpotential are needed to rival the native [NiFe] hydrogenase enzymes. Characterization of a library of NiRd mutants with variations in the secondary coordination sphere suggested that protein dynamics played a substantial role in modulating activity. In this work, rubredoxin scaffolds were selected from diverse organisms to study the effects of distal sequence variation on catalytic activity. It was found that though electrochemical catalytic activity was only slightly impacted across the series, the Rd sequence from a psychrophilic organism exhibited substantially higher levels of solution-phase hydrogen production. Additionally, Eyring analyses suggest that catalytic activation properties relate to the growth temperature of the parent organism, implying that the general correlation between the parent organism environment and catalytic activity often seen in naturally occurring enzymes may also be observed in artificial enzymes. Selecting protein scaffolds from hosts that inhabit diverse environments, particularly low-temperature environments, represents an alternative approach for engineering artificial metalloenzymes.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Pathorn Teptarakulkarn
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Riley E Stein
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Peter J Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Chem Sci 2023; 14:8531-8551. [PMID: 37592998 PMCID: PMC10430524 DOI: 10.1039/d2sc05641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.
Collapse
Affiliation(s)
- Rhiannon M Evans
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen E Beaton
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | | | - Yunjie Pang
- College of Chemistry, Beijing Normal University 100875 Beijing China
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kin Long Wong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Leonie Kertess
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - William K Myers
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire Chimie et Biologie des Métaux 17 Rue Des Martyrs F-38054 Grenoble Cedex France
| | - Philip A Ash
- School of Chemistry, The University of Leicester University Road Leicester LE1 7RH UK
| | - Kylie A Vincent
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen B Carr
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Fraser A Armstrong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| |
Collapse
|
9
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
10
|
T Waffo AF, Lorent C, Katz S, Schoknecht J, Lenz O, Zebger I, Caserta G. Structural Determinants of the Catalytic Ni a-L Intermediate of [NiFe]-Hydrogenase. J Am Chem Soc 2023. [PMID: 37328284 DOI: 10.1021/jacs.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
11
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
12
|
Chino M, Di Costanzo LF, Leone L, La Gatta S, Famulari A, Chiesa M, Lombardi A, Pavone V. Designed Rubredoxin miniature in a fully artificial electron chain triggered by visible light. Nat Commun 2023; 14:2368. [PMID: 37185349 PMCID: PMC10130062 DOI: 10.1038/s41467-023-37941-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Designing metal sites into de novo proteins has significantly improved, recently. However, identifying the minimal coordination spheres, able to encompass the necessary information for metal binding and activity, still represents a great challenge, today. Here, we test our understanding with a benchmark, nevertheless difficult, case. We assemble into a miniature 28-residue protein, the quintessential elements required to fold properly around a FeCys4 redox center, and to function efficiently in electron-transfer. This study addresses a challenge in de novo protein design, as it reports the crystal structure of a designed tetra-thiolate metal-binding protein in sub-Å agreement with the intended design. This allows us to well correlate structure to spectroscopic and electrochemical properties. Given its high reduction potential compared to natural and designed FeCys4-containing proteins, we exploit it as terminal electron acceptor of a fully artificial chain triggered by visible light.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Luigi Franklin Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
- Department of Condensed Matter Physics, University of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126, Napoli, Italy.
| |
Collapse
|
13
|
Ghorai S, Khandelwal S, Das S, Rai S, Guria S, Majumder P, Dutta A. Improving the synthetic H 2 production catalyst design strategy with the neurotransmitter dopamine. Dalton Trans 2023; 52:1518-1523. [PMID: 36594514 DOI: 10.1039/d2dt03509j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The strategic incorporation of the neurotransmitter dopamine around a cobaloxime core resulted in excellent electrocatalytic (rate 8400 s-1) and photocatalytic H2 production under neutral aqueous conditions. The influence of the synthetic outer coordination sphere features continues even with a phenylene-diimino-dioxime motif-coordinated cobalt core.
Collapse
Affiliation(s)
- Santanu Ghorai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Shikha Khandelwal
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355 India
| | - Srewashi Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India. .,National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Somnath Guria
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.
| | - Piyali Majumder
- National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India. .,National Centre of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.,Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
14
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Kerns S, Biswas A, Minnetian NM, Borovik AS. Artificial Metalloproteins: At the Interface between Biology and Chemistry. JACS AU 2022; 2:1252-1265. [PMID: 35783165 PMCID: PMC9241007 DOI: 10.1021/jacsau.2c00102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
Artificial metalloproteins (ArMs) have recently gained significant interest due to their potential to address issues in a broad scope of applications, including biocatalysis, biotechnology, protein assembly, and model chemistry. ArMs are assembled by the incorporation of a non-native metallocofactor into a protein scaffold. This can be achieved by a number of methods that apply tools of chemical biology, computational de novo design, and synthetic chemistry. In this Perspective, we highlight select systems in the hope of demonstrating the breadth of ArM design strategies and applications and emphasize how these systems address problems that are otherwise difficult to do so with strictly biochemical or synthetic approaches.
Collapse
Affiliation(s)
- Spencer
A. Kerns
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Ankita Biswas
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Natalie M. Minnetian
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - A. S. Borovik
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| |
Collapse
|
16
|
Anchoring nickel complex to g-C3N4 enables an efficient photocatalytic hydrogen evolution reaction through ligand-to-metal charge transfer mechanism. J Colloid Interface Sci 2022; 616:791-802. [DOI: 10.1016/j.jcis.2022.02.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
17
|
Treviño RE, Shafaat HS. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr Opin Chem Biol 2022; 67:102110. [PMID: 35101820 DOI: 10.1016/j.cbpa.2021.102110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here. This opinion is intended to highlight the advantages of using robust protein scaffolds for modeling multiscale contributions to reactivity and inspire the development of novel artificial metalloenzymes for other small molecule transformations.
Collapse
Affiliation(s)
- Regina E Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Sánchez P, Goel B, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Ligand Protonation at Carbon, not Nitrogen, during H 2 Production with Amine-Rich Iron Electrocatalysts. Inorg Chem 2021; 60:17407-17413. [PMID: 34735115 DOI: 10.1021/acs.inorgchem.1c03142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present monometallic H2 production electrocatalysts containing electron-rich triamine-cyclopentadienyl (Cp) ligands coordinated to iron. After selective CO extrusion from the iron tricarbonyl precursors, electrocatalysis is observed via cyclic voltammetry in the presence of an exogenous acid. Contrary to the fact that amines in the secondary coordination sphere are often protonated during electrocatalysis, comprehensive quantum-chemical calculations indicate that the amines likely do not function as proton relays; instead, endo-Cp ring protonation is most favorable after 1e- reduction. This unusual mechanistic pathway emphasizes the need to consider a broad domain of H+/e- addition products by synergistically combining experimental and theoretical resources.
Collapse
Affiliation(s)
- Práxedes Sánchez
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Bhumika Goel
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
19
|
Lin S, He C. Development of Nonheme {FeNO} 7 Complexes Based on the Pyrococcus furiosus Rubredoxin for Red-Light-Controllable Nitric Oxide Release. Inorg Chem 2021; 60:14364-14370. [PMID: 34503329 DOI: 10.1021/acs.inorgchem.1c02089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is an essential biological messenger, contributing a significant role in a diverse range of physiological processes. The light-controllable NO releasers are of great interest because of their potential as agents for NO-related research and therapeutics. Herein, we developed a pair of red-light-controllable NO releasers, pfRd-C9A-{FeNO}7 and pfRd-C42A-{FeNO}7 (pfRd = Pyrococcus furiosus rubredoxin), by constructing a nonheme {FeNO}7 center within the redesigned iron-sulfur protein scaffolds. While shown to be both air and thermally stable, these complexes are highly sensitive to red-light irradiation with temporal precision, which was confirmed by electron paramagnetic resonance spin trapping and Griess assay. The temporally controlled NO release from these complexes was also demonstrated in DNA cleavage assay. Overall, this study demonstrates that such a protein-based nonheme iron nitrosyl system could be a viable chemical tool for precise NO administration.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Naughton KJ, Treviño RE, Moore PJ, Wertz AE, Dickson JA, Shafaat HS. In Vivo Assembly of a Genetically Encoded Artificial Metalloenzyme for Hydrogen Production. ACS Synth Biol 2021; 10:2116-2120. [PMID: 34370434 DOI: 10.1021/acssynbio.1c00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The genetic encoding of artificial enzymes represents a substantial advantage relative to traditional molecular catalyst optimization, as laboratory-based directed evolution coupled with high-throughput screening methods can provide rapid development and functional characterization of enzyme libraries. However, these techniques have been of limited utility in the field of artificial metalloenzymes due to the need for in vitro cofactor metalation. Here, we report the development of methodology for in vivo production of nickel-substituted rubredoxin, an artificial metalloenzyme that is a structural, functional, and mechanistic mimic of the [NiFe] hydrogenases. Direct voltammetry on cell lysate establishes precedent for the development of an electrochemical screen. This technique will be broadly applicable to the in vivo generation of artificial metalloenzymes that require a non-native metal cofactor, offering a route for rapid enzyme optimization and setting the stage for integration of artificial metalloenzymes into biochemical pathways within diverse hosts.
Collapse
Affiliation(s)
- Kassandra J. Naughton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Regina E. Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peter J. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashlee E. Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - J. Alex Dickson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Malayam Parambath S, Williams AE, Hunt LA, Selvan D, Hammer NI, Chakraborty S. A De Novo-Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys. CHEMSUSCHEM 2021; 14:2237-2246. [PMID: 33787007 PMCID: PMC8569915 DOI: 10.1002/cssc.202100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/29/2021] [Indexed: 06/01/2023]
Abstract
Hydrogenase enzymes produce H2 gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo-designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandem a/d positions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni-thiolate proteins. The ArH produces H2 photocatalytically, demonstrating a bell-shaped pH-dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH-dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of NiI -peptide and protonation of the NiII -H- intermediate (Ni-R) by a Cys (pKa ≈6.4) to produce H2 .
Collapse
Affiliation(s)
- Sreya Malayam Parambath
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Ashley E Williams
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Leigh Anna Hunt
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
22
|
Alcala-Torano R, Halloran N, Gwerder N, Sommer DJ, Ghirlanda G. Light-Driven CO 2 Reduction by Co-Cytochrome b 562. Front Mol Biosci 2021; 8:609654. [PMID: 33937320 PMCID: PMC8082397 DOI: 10.3389/fmolb.2021.609654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
The current trend in atmospheric carbon dioxide concentrations is causing increasing concerns for its environmental impacts, and spurring the developments of sustainable methods to reduce CO2 to usable molecules. We report the light-driven CO2 reduction in water in mild conditions by artificial protein catalysts based on cytochrome b 562 and incorporating cobalt protoporphyrin IX as cofactor. Incorporation into the protein scaffolds enhances the intrinsic reactivity of the cobalt porphyrin toward proton reduction and CO generation. Mutations around the binding site modulate the activity of the enzyme, pointing to the possibility of further improving catalytic activity through rational design or directed evolution.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
23
|
DiPrimio DJ, Holland PL. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. J Inorg Biochem 2021; 219:111430. [PMID: 33873051 DOI: 10.1016/j.jinorgbio.2021.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Artificial metalloenzymes (ArMs) consist of an unnatural metal or cofactor embedded in a protein scaffold, and are an excellent platform for applying the concepts of protein engineering to catalysis. In this Focused Review, we describe the application of ArMs as simple, tunable artificial models of the active sites of complex natural metalloenzymes for small-molecule activation. In this sense, ArMs expand the strategies of synthetic model chemistry to protein-based supporting ligands with potential for participation from the second coordination sphere. We focus specifically on ArMs that are structural, spectroscopic, and functional models of enzymes for activation of small molecules like CO, CO2, O2, N2, and NO, as well as production/consumption of H2. These ArMs give insight into the identities and roles of metalloenzyme structural features within and near the cofactor. We give examples of ArM work relevant to hydrogenases, acetyl-coenzyme A synthase, superoxide dismutase, heme oxygenases, nitric oxide reductase, methyl-coenzyme M reductase, copper-O2 enzymes, and nitrogenases.
Collapse
Affiliation(s)
- Daniel J DiPrimio
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States.
| |
Collapse
|
24
|
Lin S, He C. Streamlined purification and characterization of Pyrococcus furiosus rubredoxins with different N-terminal modifications by reversed-phase HPLC. Anal Biochem 2021; 619:114128. [PMID: 33577792 DOI: 10.1016/j.ab.2021.114128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/12/2023]
Abstract
Rubredoxins (Rds), like those from Pyrococcus furious (Pf), have largely been found to be expressed in Escherichia coli (E. coli) as a mixture of different N-terminal forms, which may affect the properties of the protein. The typical procedures for the purification of Rds are cumbersome and usually with low yield. We present herein a streamlined purification strategy based on the reversed-phase high performance liquid chromatography (RP-HPLC), which offers high yield and high resolution after simply one-step purification following pre-treatment. We also show that RP-HPLC can be a valuable tool to gain information related to the thermal decomposition pathway of Pf-Rds.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
25
|
Prasad P, Selvan D, Chakraborty S. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts. Chemistry 2020; 26:12494-12509. [PMID: 32449989 DOI: 10.1002/chem.202001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H2 gas has ignited interest in the research community to synthesize catalysts that can produce H2 by the reduction of H+ . The natural H2 producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.
Collapse
Affiliation(s)
- Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
26
|
Tuning the reactivity of cobalt-based H2 production electrocatalysts via the incorporation of the peripheral basic functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Song Y, Sun Q, Lan PC, Ma S. Secondary Sphere Effects on Porous Polymeric Organocatalysts for CO 2 Transformations: Subtle Modifications Resulting in Superior Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32827-32833. [PMID: 32597167 DOI: 10.1021/acsami.0c08817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Albeit harnessing secondary sphere interactions to exert control over the reaction outcomes has primarily been applied to enzymatic and organometallic catalysis, there are seldom any studies that introduce outer-sphere modifiers into organocatalysts. This is even less in the corresponding heterogeneous catalytic system. In this contribution, we experimentally and computationally investigate the role of secondary effects in the reactivity of bromide anions toward CO2 transformations. Six pyridinium cationic porous frameworks have been synthesized and fully characterized. Structure-activity relationships and kinetics show that the type and the location of the substituents on the cationic framework have a significant impact on the nucleophilic reactivity of their bromide counter anion. Specifically, the attachment of amine substituent to the ortho position relative to a pyridinium motif produces a remarkably efficient catalyst for CO2 transformation, by a factor of six times greater in comparison to the pristine pyridinium-based polymer. The hydrogen-bond-interaction-promoted reagent activation and enhanced delocalization ability of bromide counter anion are believed to be the key to driving the reaction toward CO2 utilization. These observations, therefore, champion the leverage of secondary interaction for optimizing the reactivity of organocatalysts.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Qi Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Pui Ching Lan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
28
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 PMCID: PMC9598052 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| |
Collapse
|
29
|
Laureanti JA, Ginovska B, Buchko GW, Schenter GK, Hebert M, Zadvornyy OA, Peters JW, Shaw WJ. A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO2 Hydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph A. Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Gregory K. Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Margaret Hebert
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Oleg A. Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - John W. Peters
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wendy J. Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|