1
|
Walerowski MG, Kyrimis S, Hewitt VA, Armstrong LM, Raja R. Rationalising catalytic performance using a unique correlation matrix. Chem Commun (Camb) 2024; 60:10314-10317. [PMID: 39169817 DOI: 10.1039/d4cc03193h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Relationships between catalyst synthesis, structure and performance were investigated. Precise nanoparticle size control was achieved by tailoring solvent volume, drying temperature and solvent polarity. Catalyst performance was rationalised using a novel multidimensional correlation matrix, which considered synthetic, structural and catalytic data. This unique matrix can aid the design of improved catalysts.
Collapse
Affiliation(s)
| | - Stylianos Kyrimis
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, UK
| | - Victoria A Hewitt
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | - Robert Raja
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
2
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
3
|
Yang M, Yu J, Zimina A, Sarma BB, Grunwaldt JD, Zada H, Wang L, Sun J. Unlocking a Dual-Channel Pathway in CO 2 Hydrogenation to Methanol over Single-Site Zirconium on Amorphous Silica. Angew Chem Int Ed Engl 2024; 63:e202312292. [PMID: 37932823 DOI: 10.1002/anie.202312292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Converting CO2 into methanol on a large scale is of great significance in the sustainable methanol economy. Zirconia species are considered to be an essential support in Cu-based catalysts due to their excellent properties for CO2 adsorption and activation. However, the evolution of Zr species during the reaction and the effect of their structure on the reaction pathways remain unclear. Herein, single-site Zr species in an amorphous SiO2 matrix are created by enhancing the Zr-Si interaction in Cu/ZrO2 -SiO2 catalysts. In situ X-ray absorption spectroscopy (XAS) reveals that the coordination environment of single-site Zr is sensitive to the atmosphere and reaction conditions. We demonstrate that the CO2 adsorption occurs preferably on the interface of Cu and single-site Zr rather than on ZrO2 nanoparticles. Methanol synthesis in reverse water-gas-shift (RWGS)+CO-hydro pathway is verified only over single-dispersed Zr sites, whereas the ordinary formate pathway occurs on ZrO2 nanoparticles. Thus, it expands a non-competitive parallel pathway as a supplement to the dominant formate pathway, resulting in the enhancement of Cu activity sixfold and twofold based on Cu/SiO2 and Cu/ZrO2 catalysts, respectively. The establishment of this dual-channel pathway by single-site Zr species in this work opens new horizons for understanding the role of atomically dispersed oxides in catalysis science.
Collapse
Affiliation(s)
- Meng Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
| | - Anna Zimina
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Habib Zada
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linkai Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
| | - Jian Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
| |
Collapse
|
4
|
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of CO x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023; 123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
Abstract
Decentralized chemical plants close to circular carbon sources will play an important role in shaping the postfossil society. This scenario calls for carbon technologies which valorize CO2 and CO with renewable H2 and utilize process intensification approaches. The single-reactor tandem reaction approach to convert COx to hydrocarbons via oxygenate intermediates offers clear benefits in terms of improved thermodynamics and energy efficiency. Simultaneously, challenges and complexity in terms of catalyst material and mechanism, reactor, and process gaps have to be addressed. While the separate processes, namely methanol synthesis and methanol to hydrocarbons, are commercialized and extensively discussed, this review focuses on the zeolite/zeotype function in the oxygenate-mediated conversion of COx to hydrocarbons. Use of shape-selective zeolite/zeotype catalysts enables the selective production of fuel components as well as key intermediates for the chemical industry, such as BTX, gasoline, light olefins, and C3+ alkanes. In contrast to the separate processes which use methanol as a platform, this review examines the potential of methanol, dimethyl ether, and ketene as possible oxygenate intermediates in separate chapters. We explore the connection between literature on the individual reactions for converting oxygenates and the tandem reaction, so as to identify transferable knowledge from the individual processes which could drive progress in the intensification of the tandem process. This encompasses a multiscale approach, from molecule (mechanism, oxygenate molecule), to catalyst, to reactor configuration, and finally to process level. Finally, we present our perspectives on related emerging technologies, outstanding challenges, and potential directions for future research.
Collapse
Affiliation(s)
- Jingxiu Xie
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
5
|
Farpón MG, Henao W, Plessow PN, Andrés E, Arenal R, Marini C, Agostini G, Studt F, Prieto G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew Chem Int Ed Engl 2023; 62:e202214048. [PMID: 36315420 PMCID: PMC10099584 DOI: 10.1002/anie.202214048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 12/05/2022]
Abstract
A frontier challenge in single-atom (SA) catalysis is the design of fully inorganic sites capable of emulating the high reaction selectivity traditionally exclusive of organometallic counterparts in homogeneous catalysis. Modulating the direct coordination environment in SA sites, via the exploitation of the oxide support's surface chemistry, stands as a powerful albeit underexplored strategy. We report that isolated Rh atoms stabilized on oxygen-defective SnO2 uniquely unite excellent TOF with essentially full selectivity in the gas-phase hydroformylation of ethylene, inhibiting the thermodynamically favored olefin hydrogenation. Density Functional Theory calculations and surface characterization suggest that substantial depletion of the catalyst surface in lattice oxygen, energetically facile on SnO2 , is key to unlock a high coordination pliability at the mononuclear Rh centers, leading to an exceptional performance which is on par with that of molecular catalysts in liquid media.
Collapse
Affiliation(s)
- Marcos G Farpón
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Wilson Henao
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Eva Andrés
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| | - Raúl Arenal
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID Foundation, 50018, Zaragoza, Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
| | - Giovanni Agostini
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gonzalo Prieto
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
6
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
7
|
Belthle KS, Beyazay T, Ochoa-Hernández C, Miyazaki R, Foppa L, Martin WF, Tüysüz H. Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H 2-Dependent CO 2 Reduction to Metabolic Intermediates. J Am Chem Soc 2022; 144:21232-21243. [DOI: 10.1021/jacs.2c08845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kendra S. Belthle
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tuğçe Beyazay
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Cristina Ochoa-Hernández
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ray Miyazaki
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Lucas Foppa
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
9
|
Yuan Y, Qi L, Guo T, Hu X, He Y, Guo Q. A review on the development of catalysts and technologies of CO 2 hydrogenation to produce methanol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yongning Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Liyue Qi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Tuo Guo
- Department of Chemistry, University College London, London, UK
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Yurong He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Qingjie Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
- Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
11
|
Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO 2 Hydrogenation to Methanol. NANOMATERIALS 2022; 12:nano12071048. [PMID: 35407166 PMCID: PMC9000400 DOI: 10.3390/nano12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
The synthesis of methanol by carbon dioxide hydrogenation has been studied using copper-molybdenum carbides supported on high surface area graphite, reduced graphene oxide and carbon nanotubes. The synthesis conditions and the effect of the support were studied. The catalysts were prepared in situ using H2 or He at 600 °C or 700 °C. Both molybdenum carbide and oxycarbide were obtained. A support with less reactive carbon resulted in lower proportion of carbide obtained. The best results were achieved over a 5 wt.% Cu and 10 wt.% Mo on high surface area graphite that reached 96.3% selectivity to methanol.
Collapse
|
12
|
Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts 2022. [DOI: 10.3390/catal12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Au nanoparticles supported on ZrO2 enhance its surface acidic/basic properties to produce a high yield of methanol via the hydrogenation of CO2. Amorphous ZrO2-supported 0.5–1 wt.% Au catalysts were synthesized by two methods, namely deposition precipitation (DP) and impregnation (IMP), characterized by a variety of techniques, and evaluated in the process of CO2 hydrogenation to methanol. The DP-method catalysts were highly advantageous over the IMP-method catalyst. The DP method delivered samples with a large surface area, along with the control of the Au particle size. The strength and number of acidic and basic sites was enhanced on the catalyst surface. These surface changes attributed to the DP method greatly improved the catalytic activity when compared to the IMP method. The variations in the surface sites due to different preparation methods exhibited a huge impact on the formation of important intermediates (formate, dioxymethylene and methoxy) and their rapid hydrogenation to methanol via the formate route, as revealed by means of in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analysis. Finally, the rate of formation of methanol was enhanced by the increased synergy between the metal and the support.
Collapse
|
13
|
Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A. Plasma-Catalytic Methanol Synthesis from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaolun Cui
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shengyan Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanhui Yi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Amin Jafarzadeh
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shangkun Li
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Erik Cornelis Neyts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Yanpeng Hao
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Licheng Li
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Xiaoxing Zhang
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinkui Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| |
Collapse
|
14
|
Jiang F, Yang Y, Wang L, Li Y, Fang Z, Xu Y, Liu B, Liu X. Dependence of copper particle size and interface on methanol and CO formation in CO2 hydrogenation over Cu@ZnO catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01836a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The copper particle size and the interface of Cu and ZnO showed strong impacts on the formation of methanol and CO in CO2 hydrogenation over Cu@ZnO catalysts.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Yang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihao Fang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Zhao J, Zhang H, Wang H, Wang J. Tuning Lewis acid/base on the TiO2-supported Pd-CoOx interfaces to control the CO2 selective hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Kinetically Relevant Variation Triggered by Hydrogen Pressure: A Mechanistic Case Study of CO2 Hydrogenation to Methanol over Cu/ZnO. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Docherty SR, Copéret C. Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO2 Hydrogenation to Methanol. J Am Chem Soc 2021; 143:6767-6780. [DOI: 10.1021/jacs.1c02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Scott R. Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zurich, Switzerland
| |
Collapse
|
18
|
Raseale S, Marquart W, Jeske K, Prieto G, Claeys M, Fischer N. Supported Fe xNi y catalysts for the co-activation of CO 2 and small alkanes. Faraday Discuss 2021; 229:208-231. [PMID: 33629982 DOI: 10.1039/c9fd00130a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of both the Fe : Ni ratio (5 to 1 : 1) and the relative Lewis acidity of a metal oxide support on catalytic activity, selectivity and stability was investigated in the CO2 mediated oxidative dehydrogenation of ethane (CO2-ODH). To avoid effects of varying pore sizes, shapes and volumes of the supports, chromia and zirconia overlayers were coated onto a common γ-Al2O3 carrier (CrOx@Al2O3 and ZrOx@Al2O3). Separately, oxidic FexNiy alloy precursor nanoparticles were prepared using a nonaqueous surfactant-free method and deposited by sonication onto the carrier. In comparison to previous studies in the field, this synthesis technique yields closely associated iron and nickel increasing the chances for alloy formation. During reduction, a mixture of a bcc and a fcc alloy phase was formed, with the content of bcc increasing with increasing iron content as predicted by the bulk phase diagram. Upon exposure to carbon dioxide at elevated temperatures, the bcc metallic phase is selectively oxidised to an inverse spinel structure via the dissociation of CO2. When exposed to CO2-ODH conditions, the bare ZrOx@Al2O3 support shows no activity. The presence of FeNi phases increases the conversion of ethane and CO2 marginally (<2%) but forms ethylene at high selectivity (SC2H4 > 80%). The CrOx@Al2O3 support shows some initial activity (XC2H6 < 5%) at very high ethylene selectivity (SC2H4 > 90%) but deactivates with time on stream. Comparison of the ethane and carbon dioxide conversions suggests that direct dehydrogenation rather than the oxidative pathway is taking place. When FeNi particles with the highest Fe content are added, the ethane conversion behavior hardly changes, but the CO2 conversion is increased now supporting the stoichiometric CO2-ODH reaction (SC2H4 > 95%). It is therefore evident that a tandem catalyst system between a reducible oxide carrier and the FeNi species is required. Increasing the Ni content results in an increase in activity and stability while changing the dominant reaction pathway to a combination of dry reforming, CO2-ODH and possibly the reverse Boudouard reaction, with the latter countering catalyst deactivation through carbon deposition.
Collapse
Affiliation(s)
- Shaine Raseale
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Wijnand Marquart
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Kai Jeske
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mühlheim an der Ruhr, Germany
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mühlheim an der Ruhr, Germany
| | - Michael Claeys
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Nico Fischer
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
19
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH
3
OH Selectivity and Formation Rates on Cu‐Based CO
2
Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir Prelog Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
20
|
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH 3 OH Selectivity and Formation Rates on Cu-Based CO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021; 60:9650-9659. [PMID: 33559910 DOI: 10.1002/anie.202100672] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Indexed: 01/03/2023]
Abstract
CH3 OH formation rates in CO2 hydrogenation on Cu-based catalysts sensitively depend on the nature of the support and the presence of promoters. In this context, Cu nanoparticles supported on tailored supports (highly dispersed M on SiO2 ; M=Ti, Zr, Hf, Nb, Ta) were prepared via surface organometallic chemistry, and their catalytic performance was systematically investigated for CO2 hydrogenation to CH3 OH. The presence of Lewis acid sites enhances CH3 OH formation rate, likely originating from stabilization of formate and methoxy surface intermediates at the periphery of Cu nanoparticles, as evidenced by metrics of Lewis acid strength and detection of surface intermediates. The stabilization of surface intermediates depends on the strength of Lewis acid M sites, described by pyridine adsorption enthalpies and 13 C chemical shifts of -OCH3 coordinated to M; these chemical shifts are demonstrated here to be a molecular descriptor for Lewis acid strength and reactivity in CO2 hydrogenation.
Collapse
Affiliation(s)
- Gina Noh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jordan Meyet
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Petr Šot
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
21
|
Li Y, Liu B, Liu J, Wang T, Shen Y, Zheng K, Jiang F, Xu Y, Liu X. Tuning the Lewis acidity of ZrO 2 for efficient conversion of CH 4 and CO 2 into acetic acid. NEW J CHEM 2021. [DOI: 10.1039/d1nj00794g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the strong Lewis acidity of ZrO2via H2SO4 treatment to promote the conversion of CH4 and CO2 into acetic acid.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Bing Liu
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Jie Liu
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Ting Wang
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Yu Shen
- School of Biotechnology
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Ke Zheng
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Feng Jiang
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Yuebing Xu
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| | - Xiaohao Liu
- Department of Chemical Engineering
- School of Chemical and Material Engineering
- Jiangnan University
- 214122 Wuxi
- P. R. China
| |
Collapse
|
22
|
Dongil AB, Conesa JM, Pastor-Pérez L, Sepúlveda-Escribano A, Guerrero-Ruiz A, Rodríguez-Ramos I. Carbothermally generated copper–molybdenum carbide supported on graphite for the CO2 hydrogenation to methanol. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00410g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carbothermal synthesis of monometallic and bimetallic molybdenum carbide and copper supported on high surface area graphite, has been studied at 600 and 700 °C and characterised. The catalysts were tested for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- A. B. Dongil
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
| | - J. M. Conesa
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
| | - L. Pastor-Pérez
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | - A. Sepúlveda-Escribano
- Laboratorio de Materiales Avanzados
- Departamento de Química Inorgánica – Instituto Universitario de Materiales de Alicante
- Universidad de Alicante
- E-03080 Alicante
- Spain
| | - A. Guerrero-Ruiz
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
- UA UNED-ICP(CSIC)
| | - I. Rodríguez-Ramos
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
- UA UNED-ICP(CSIC)
| |
Collapse
|
23
|
Wai MH, Ashok J, Dewangan N, Das S, Xi S, Borgna A, Kawi S. Influence of Surface Formate Species on Methane Selectivity for Carbon Dioxide Methanation over Nickel Hydroxyapatite Catalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ming Hui Wai
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jangam Ashok
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Nikita Dewangan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Sonali Das
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shibo Xi
- Institute of Chemical & Engineering Sciences 1 Pesek Road Jurong Island, Singapore 627833 Singapore
| | - Armando Borgna
- Institute of Chemical & Engineering Sciences 1 Pesek Road Jurong Island, Singapore 627833 Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
24
|
Affiliation(s)
- Edward Furimsky
- IMAF Group, 184 Marlborough Avenue, Ottawa, Ontario, Canada K1N 8G4
| |
Collapse
|
25
|
Laudenschleger D, Ruland H, Muhler M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al 2O 3 catalysts. Nat Commun 2020; 11:3898. [PMID: 32753573 PMCID: PMC7403733 DOI: 10.1038/s41467-020-17631-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 11/28/2022] Open
Abstract
The heterogeneously catalysed reaction of hydrogen with carbon monoxide and carbon dioxide (syngas) to methanol is nearly 100 years old, and the standard methanol catalyst Cu/ZnO/Al2O3 has been applied for more than 50 years. Still, the nature of the Zn species on the metallic Cu0 particles (interface sites) is heavily debated. Here, we show that these Zn species are not metallic, but have a positively charged nature under industrial methanol synthesis conditions. Our kinetic results are based on a self-built high-pressure pulse unit, which allows us to inject selective reversible poisons into the syngas feed passing through a fixed-bed reactor containing an industrial Cu/ZnO/Al2O3 catalyst under high-pressure conditions. This method allows us to perform surface-sensitive operando investigations as a function of the reaction conditions, demonstrating that the rate of methanol formation is only decreased in CO2-containing syngas mixtures when pulsing NH3 or methylamines as basic probe molecules.
Collapse
Affiliation(s)
- Daniel Laudenschleger
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Holger Ruland
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany.
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
26
|
Kim J, Pfänder N, Prieto G. Recycling of CO 2 by Hydrogenation of Carbonate Derivatives to Methanol: Tuning Copper-Oxide Promotion Effects in Supported Catalysts. CHEMSUSCHEM 2020; 13:2043-2052. [PMID: 32061179 PMCID: PMC7216934 DOI: 10.1002/cssc.202000166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The selective hydrogenation of organic carbonates to methanol is a relevant transformation to realize flexible processes for the recycling of waste CO2 with renewable H2 mediated by condensed carbon dioxide surrogates. Oxide-supported copper nanoparticles are promising solid catalysts for this selective hydrogenation. However, essential for their optimization is to rationalize the prominent impact of the oxide support on performance. Herein, the role of Lewis acid centers, exposed on the oxide support at the periphery of the Cu nanoparticles, was systematically assessed. For the hydrogenation of propylene carbonate, as a model cyclic carbonate, the conversion rate, the apparent activation energy, and the selectivity to methanol correlate with the Lewis acidity of the coordinatively unsaturated cationic sites exposed on the oxide support. Lewis sites of markedly low and high electron-withdrawing character promote unselective decarbonylation and decarboxylation reaction pathways, respectively. Supports exposing Lewis sites of intermediate acidity maximize the selectivity to methanol while inhibiting acid-catalyzed secondary reactions of the propanediol product, and thus enable its recovery in cyclic processes of CO2 hydrogenation mediated by condensed carbonate derivatives. These findings help rationalize metal-support promotion effects that determine the performance of supported metal nanoparticles in this and other selective hydrogenation reactions of significance in the context of sustainable chemistry.
Collapse
Affiliation(s)
- Jonglack Kim
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Norbert Pfänder
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Gonzalo Prieto
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
27
|
Zheng A, Huang Z, Wei G, Zhao K, Jiang L, Zhao Z, Tian Y, Li H. Controlling Deoxygenation Pathways in Catalytic Fast Pyrolysis of Biomass and Its Components by Using Metal-Oxide Nanocomposites. iScience 2020; 23:100814. [PMID: 31954322 PMCID: PMC6962703 DOI: 10.1016/j.isci.2019.100814] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Selectively breaking the C-O bonds within biomass during catalytic fast pyrolysis (CFP) is desired, but extremely challenging. Herein, we develop a series of metal-oxide nanocomposites composed of W, Mo, Zr, Ti, or Al. It is demonstrated that the nanocomposites of WO3-TiO2-Al2O3 exhibit the highest deoxygenation ability during CFP of lignin, which can compete with the commercial HZSM-5 catalyst. The nanocomposites can selectively cleave the C-O bonds within lignin-derived phenols to form aromatics by direct demethoxylation and subsequent dehydration. Moreover, the nanocomposites can also achieve the selective breaking of the C-O bonds within xylan and cellulose to form furans by dehydration. The Brønsted and Lewis acid sites on the nanocomposites can be responsible for the deoxygenation of lignin and polysaccharides, respectively. This study provides new insights for the rational design of multifunctional catalysts that are capable of simultaneously breaking the C-O bonds within lignin and polysaccharides.
Collapse
Affiliation(s)
- Anqing Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 523000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhen Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Guoqiang Wei
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Kun Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Liqun Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zengli Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yuanyu Tian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Haibin Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|