1
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Li C, Gu S, Xiao Y, Lin X, Lin X, Zhao X, Nan J, Xiao X. Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10-1} facets for the selective oxidation of toluene under blue LED irradiation. J Colloid Interface Sci 2024; 668:426-436. [PMID: 38688181 DOI: 10.1016/j.jcis.2024.04.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Reactive radicals are crucial for activating inert and low-polarity C(sp3)-H bonds for the fabrication of high value-added products. Herein, novel single-crystal oxygen-rich bismuth oxybromide nanosheets (Bi4O5Br2 SCNs) with more than 85 % {10-1} facets exposure and oxygen defects were synthesized via a facile solvothermal route. The Bi4O5Br2 SCNs demonstrated excellent photocatalytic performance in the selective oxidation of toluene under blue light. The yield of benzaldehyde was 1876.66 μmol g-1 h-1, with a selectivity of approximately 90 %. Compared to that of polycrystalline Bi4O5Br2 nanosheets (Bi4O5Br2 PCNs), the activity of Bi4O5Br2 SCNs exhibit a 21-fold increase. Experimental studies and density functional theory (DFT) calculations have demonstrated that the defect Bi4O5Br2 (10-1) facets exhibits exceptional adsorption properties for O2 molecules. In addition, the single-crystal structure in the presence of surface defects significantly increases the separation and transport of photogenerated carriers, resulting in the effective activation of adsorbed O2 into superoxide radicals (•O2-). Subsequently, the positively charged phenylmethyl H is readily linked to the negatively charged superoxide radical anion, thereby activating the CH bond. This study offers a fresh perspective and valuable insights into the development of efficient molecular oxygen-activated photocatalysts and their application in the selective catalytic conversion of aromatic C(sp3)-H bonds.
Collapse
Affiliation(s)
- Chenyu Li
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Songting Gu
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yingxi Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaotong Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xinyan Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaoyang Zhao
- Department of Environmental Engineering, Henan Polytechnic Institute, Nanyang 473009, PR China
| | - Junmin Nan
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Xin Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Liu D, Wang Y, Gong Q, Xia Y, Li L, Xue Y, Yang J, Li S. Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis. CHEM REC 2024; 24:e202300334. [PMID: 38984722 DOI: 10.1002/tcr.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/09/2024] [Indexed: 07/11/2024]
Abstract
Although hexagonal boron nitride (h-BN) was initially considered a less promising photocatalyst due to its large band gap and apparent chemical inertness, its unique two-dimensional lamellar structure coupled with high stability and environmental friendliness, as the second largest van der Waals material after graphene, provides a unique platform for photocatalytic innovation. This review not only highlights the intrinsic qualities of h-BN with photocatalytic potentials, such as high stability, environmental compatibility, and tunable bandgap through various modification strategies but also provides a comprehensive overview of the recent advances in h-BN-based nanomaterials for environmental and energy applications, as well as an in-depth description of the modification methods and fundamental properties for these applications. In addition, we discuss the challenges and prospects of h-BN-based nanomaterials for future photocatalysis.
Collapse
Affiliation(s)
- Dongao Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Quanxin Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yupeng Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lei Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Jianqiao University, Shanghai, 201306, China
| | - Shengjuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
4
|
Wu Z, Zhai S, Luo M, Dong Q, Wu S, Zheng M. Metal-Free Heterogeneous Photocatalysis for Carbocarboxylation of Alkenes: Efficient Synthesis of γ-Amino Carboxylic Derivatives. Chem Asian J 2024:e202301069. [PMID: 38234110 DOI: 10.1002/asia.202301069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
A metal-free heterogeneous protocol is established herein for the synthesis of value-added γ-amino acid scaffolds via carbocarboxylation of alkenes with CO2 and alkylamines under visible light irradiation. The protocol shows broad substrate scope under mild reaction conditions and good stability of the catalyst for recycle tests. Moreover, the methodology could be feasible to the late-stage derivatization of several natural products, enriching the chemical arsenal for practical application.
Collapse
Affiliation(s)
- Ziwei Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Senmao Zhai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meizhen Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Quan Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shiwen Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), College of Chemistry, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Fan M, Wang Z, Sun K, Wang A, Zhao Y, Yuan Q, Wang R, Raj J, Wu J, Jiang J, Wang L. NBOH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209086. [PMID: 36780921 DOI: 10.1002/adma.202209086] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/09/2023] [Indexed: 05/17/2023]
Abstract
Carbon materials are considered promising 2/4 e- oxygen reduction reaction (ORR) electrocatalysts for synthesizing H2 O2 /H2 O via regulating heteroatom dopants and functionalization. Here, various doped and functionalized graphene quantum dots (GQDs) are designed to reveal the crucial active sites of carbon materials for ORR to produce H2 O2 . Density functional theory (DFT) calculations predict that the edge structure involving edge N, B dopant pairs and further OH functionalization to the B (NBOH) is an active center for 2e- ORR. To verify the above predication, GQDs with an enriched density of NBOH (NBO-GQDs) are designed and synthesized by the hydrothermal reaction of NH2 edge-functionalized GQDs with H3 BO3 forming six-member heterocycle containing the NBOH structure. When dispersed on conductive carbon substrates, the NBO-GQDs show H2 O2 selectivity of over 90% at 0.7 -0.8 V versus reversible hydrogen electrode in the alkaline solution in a rotating ring-disk electrode setup. The selectivity retains 90% of the initial value after 12 h stability test. In a flow cell setup, the H2 O2 production rate is up to 709 mmol gcatalyst -1 h-1 , superior to most reported carbon- and metal-based electrocatalysts. This work provides molecular insight into the design and formulation of highly efficient carbon-based catalysts for sustainable H2 O2 production.
Collapse
Affiliation(s)
- Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kang Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Ao Wang
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Yuying Zhao
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruibin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Ma S, Liu Q, Cui J, Rao C, Jia M, Yao X, Zhang J. Pyridinium-derived polycationic covalent organic polymers for aromatic C-H bond photocatalytic oxidation. J Colloid Interface Sci 2023; 634:431-439. [PMID: 36542972 DOI: 10.1016/j.jcis.2022.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Using oxygen in the air as the sole oxidant to oxidize hydrocarbons into high value-added compounds is a highly promising synthesis strategy with economic advantages. However, the oxidation of hydrocarbons with molecular oxygen under mild conditions is challenging due to the large C-H bond energy in hydrocarbons. Herein, a metal-free two-dimensional covalent organic polymers (COP) functionalized by photoactive pyridinium units has been developed for heterogeneous photocatalytic oxidation of hydrocarbons. This is the first kind of COPs material that can achieve photocatalytic oxidation of hydrocarbons without any additives or stoichiometric oxidants except for the oxygen in the air.
Collapse
Affiliation(s)
- Shuai Ma
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Qiunan Liu
- Department of Nanocharacterization for Nanostructures and Functions, The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 565-0871, Japan
| | - Jingwang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Caihui Rao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Mengze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Xinrong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China.
| |
Collapse
|
7
|
Garg H, Patial S, Raizada P, Nguyen VH, Kim SY, Le QV, Ahamad T, Alshehri SM, Hussain CM, Nguyen TTH, Singh P. Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review. CHEMOSPHERE 2023; 313:137610. [PMID: 36563726 DOI: 10.1016/j.chemosphere.2022.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchronously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z-schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review demonstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the reaction mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehensively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.
Collapse
Affiliation(s)
- Heena Garg
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA
| | - Thi Thanh Huyen Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
8
|
Liang C, Lu ZA, Zheng M, Chen M, Zhang Y, Zhang B, Zhang J, Xu P. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering. NANO LETTERS 2022; 22:6590-6598. [PMID: 35969868 DOI: 10.1021/acs.nanolett.2c01825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, with two-dimensional (2D) borocarbonitride (BCN) as a metal- and plasmon-free surface-enhanced Raman scattering (SERS) platform, we demonstrate a band structure engineering strategy to facilitate the charge transfer process for an enhanced SERS response. Especially, when the conduction band of the BCN substrate is tuned to align with the LUMO of the target molecule, remarkable SERS performance is achieved, ascribed to the borrowing effect from the vibronic coupling of resonances through the Herzberg-Teller coupling term. Meanwhile, fluorescence quenching is achieved due to the efficient charge transfer between the BCN substrate and target molecule. Consequently, BCN can accurately detect 20 kinds of trace chemical and bioactive analytes. Moreover, BCN exhibits excellent thermal and chemical stability, which can not only withstand high-temperature (300 °C) heating in the air but also resist long-term corrosion in harsh acid (pH = 0, HCl) and base (pH = 14, NaOH). This work provides new insight into band structure engineering in promoting the SERS performance of plasmon- and metal-free semiconductor substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zi-Ang Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
9
|
Yang G, Jiao Y, Yan H, Xie Y, Tian C, Wu A, Wang Y, Fu H. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat Commun 2022; 13:3125. [PMID: 35668075 PMCID: PMC9170728 DOI: 10.1038/s41467-022-30495-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
Paired electroreduction and electrooxidation of organics with water as a feedstock to produce value-added chemicals is meaningful. A comprehensive understanding of reaction mechanism is critical for the catalyst design and relative area development. Here, we have systematically studied the mechanism of the paired electroreduction and electrooxidation of organics on Fe-Mo-based phosphide heterojunctions. It is shown that active H* species for organic electroreduction originate from water. As for organic electrooxidation, among various oxygen species (OH*, OOH*, and O*), OH* free radicals derived from the first step of water dissociation are identified as active species. Furthermore, explicit reaction pathways and their paired advantages are proposed based on theoretical calculations. The paired electrolyzer powered by a solar cell shows a low voltage of 1.594 V at 100 mA cm-2, faradaic efficiency of ≥99%, and remarkable cycle stability. This work provides a guide for sustainable synthesis of various value-added chemicals via paired electrocatalysis.
Collapse
Affiliation(s)
- Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Aiping Wu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yu Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
10
|
Highly Efficient and Selective Carbon-Doped BN Photocatalyst Derived from a Homogeneous Precursor Reconfiguration. Catalysts 2022. [DOI: 10.3390/catal12050555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The modification of inert boron nitride by carbon doping to make it an efficient photocatalyst has been considered as a promising strategy. Herein, a highly efficient porous BCN (p-BCN) photocatalyst was synthesized via precursor reconfiguration based on the recrystallization of a new homogeneous solution containing melamine diborate and glucose. Two crystal types of the p-BCN were obtained by regulating the recrystallization conditions of the homogeneous solution, which showed high photocatalytic activities and a completely different CO2 reduction selectivity. The CO generation rate and selectivity of the p-BCN-1 were 63.1 μmol·g−1·h−1 and 54.33%; the corresponding values of the p-BCN-2 were 42.6 μmol·g−1·h−1 and 80.86%. The photocatalytic activity of the p-BCN was significantly higher than those of equivalent materials or other noble metals-loaded nanohybrids reported in the literature. It was found that the differences in the interaction sites between the hydroxyl groups in the boric acid and the homolateral hydroxyl groups in the glucose were directly correlated with the structures and properties of the p-BCN photocatalyst. We expect that the developed approach is general and could be extended to incorporate various other raw materials containing hydroxyl groups into the melamine diborate solution and could modulate precursors to obtain porous BN-based materials with excellent performance.
Collapse
|
11
|
Li M, Wang X, Zhu Y, Jia X, Zhang S, Wang H, Li Y, Hu G. Fe2O3-decorated boron/nitrogen-co-doped carbon nanosheets as an electrochemical sensing platform for ultrasensitive determination of paraquat in natural water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
13
|
Zhu Y, Wang X, Wang P, Zhu J, He Y, Jia X, Chang F, Wang H, Hu G. Two-dimensional BCN nanosheets self-assembled with hematite nanocrystals for sensitively detecting trace toxic Pb(II) ions in natural water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112745. [PMID: 34481349 DOI: 10.1016/j.ecoenv.2021.112745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In the present work, hematite-boron-carbonitride (Fe2O3-BCN) nanosheets were synthesized by a simple hydrothermal reaction and the following high temperature treatment. The morphology, structure and chemical composition of the as-prepared material were carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Fe2O3-BCN nanosheets were used to modified on the surface of the glassy carbon electrode to fabricate an electrochemical sensor for lead ions (Pb(II)) via differential pulse anodic stripping voltammetry (DPASV). At the same time, the influence of the modification concentration, solution acidity, deposition potential and deposition time on response peak current of Pb(II) at the Fe2O3-BCN-based electrochemical sensor was well investigated. Under the optimized conditions, the electrochemical signal and concentration of Pb(II) show two-stage linear relationship in the range of 0.5 - 40 μg/L and 40 -140 μg/L, with a limit of detection (LOD) of 0.129 μg/L. The Fe2O3-BCN-based electrochemical sensor shows excellent selectivity and anti-interference ability in the anti-interference experiments and actual sample analysis experiments, revealing its broad application in environmental monitoring of Pb(II).
Collapse
Affiliation(s)
- Yelin Zhu
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinzhong Wang
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yingnan He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
14
|
A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO 2-functionalized covalent organic framework. Talanta 2021; 233:122520. [PMID: 34215135 DOI: 10.1016/j.talanta.2021.122520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
This work describes a novel affinity peptide-antibody sandwich electrochemical strategy for the ultrasensitive detection of prostate-specific antigen (PSA). Herein, polydopamine-coated boron-doped carbon nitride (Au@PDA@BCN) was synthesized and used as a sensing platform to anchor gold nanoparticles and immobilize primary antibody. Meanwhile, AuPt metallic nanoparticle and manganese dioxide (MnO2)-functionalized covalent organic frameworks (AuPt@MnO2@COF) was facilely synthesized to serve as a nanocatalyst and ordered nanopore for the enrichment and amplification of signal molecules (methylene blue, MB). PSA affinity peptide was bound to AuPt@MnO2@COF to form Pep/MB/AuPt@MnO2@COF nanocomposites (probe). The peptide-PSA-antibody sandwich biosensor was constructed, and the redox signal of MB was measured with the existence of PSA. The fabricated sensor exhibited a linear response (0.00005-10 ng mL-1) with a low detection limit of 16.7 fg mL-1 under the optimum condition. Additionally, the sensor showed an excellent selectivity, ideal repeatability, and good stability for PSA detection in real samples. Furthermore, the porous structure of COF can enrich more MB molecules and increase the sensitivity of the biosensor. This study provides an efficient and ultrasensitive strategy for PSA detection and broadens the use of organic/inorganic porous nanocomposite in biosensing.
Collapse
|
15
|
Wang J, Zhao H, Zhu B, Larter S, Cao S, Yu J, Kibria MG, Hu J. Solar-Driven Glucose Isomerization into Fructose via Transient Lewis Acid–Base Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Stephen Larter
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
16
|
Wu S, Wang Y. Construction of C@WS 2/g-C 3N 4 Z-scheme photocatalyst with C film as an effective electron mediator and its enhanced degradation of 2,4-dichlorophenol under visible light. CHEMOSPHERE 2021; 273:129746. [PMID: 33515963 DOI: 10.1016/j.chemosphere.2021.129746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
A novel Z-scheme heterojunction C@WS2/g-C3N4 composite was prepared with carbon as a bridge for improving the photocatalytic property. The results of composition and structure studies demonstrate that the introduced carbon was deposited on the surface of WS2 with a film form in the ternary composites. The analysis of optical and photo-electrochemical properties reveals that the carbon film played as an electron-mediator in the ternary composites and could improve the separation and transportation of photogenerated charge. Meanwhile, it could change the pathway of photogenerated electrons between WS2 and g-C3N4, thereby constructing a Z-scheme heterojunction for maintaining the redox ability of photogenerated charge. The ternary 2%-C@WS2/g-C3N4 composite exhibited an excellent photodegradation rate towards 2,4-dichlorophenol (2,4-DCP) under visible light irradiation, which was 3.15 and 3.06 times of the pure g-C3N4 and binary WS2/g-C3N4 composite, respectively. Besides, the degradation pathway of 2,4-DCP and photocatalytic degradation mechanisms were investigated and discussed in detail. The generated ·O2--, ·OH and h+ by ternary composites could promote the dechlorination reaction of 2,4-DCP effectively and decompose it into smaller organic molecules. This work extends the design of g-C3N4-based 2D/2D heterojunction or Z-scheme photocatalysts to remediate the environment.
Collapse
Affiliation(s)
- Shu Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
17
|
Selective Reductive Transformations of Organic Nitro Compounds in Heterogeneous Photocatalytic Systems: A Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Luo J, Wang C, Liu J, Wei Y, Chao Y, Zou Y, Mu L, Huang Y, Li H, Zhu W. High‐performance adsorptive desulfurization by ternary hybrid boron carbon nitride aerogel. AIChE J 2021. [DOI: 10.1002/aic.17280] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jing Luo
- School of Chemistry and Chemical Engineering, Institute for Energy Research Jiangsu University Zhenjiang China
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
| | - Chao Wang
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
| | - Jixing Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research Jiangsu University Zhenjiang China
| | - Yanchen Wei
- School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yanhong Chao
- School of Pharmacy Jiangsu University Zhenjiang China
| | - Yiru Zou
- School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Liping Mu
- School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Institute for Energy Research Jiangsu University Zhenjiang China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research Jiangsu University Zhenjiang China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research Jiangsu University Zhenjiang China
| |
Collapse
|
19
|
Yuan T, Zheng M, Antonietti M, Wang X. Ceramic boron carbonitrides for unlocking organic halides with visible light. Chem Sci 2021; 12:6323-6332. [PMID: 34084430 PMCID: PMC8115245 DOI: 10.1039/d1sc01028j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C-H, C-C, and C-S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C-X (carbon-halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable.
Collapse
Affiliation(s)
- Tao Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou 350116 China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou 350116 China
| | - Markus Antonietti
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm 14424 Potsdam Germany
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou 350116 China
| |
Collapse
|
20
|
Rosso C, Filippini G, Criado A, Melchionna M, Fornasiero P, Prato M. Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS NANO 2021; 15:3621-3630. [PMID: 33715354 PMCID: PMC8041367 DOI: 10.1021/acsnano.1c00627] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.
Collapse
Affiliation(s)
- Cristian Rosso
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
| | - Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- ICCOM-CNR
Trieste Research Unit, University of Trieste, Trieste 34127, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
21
|
Shi J, Yuan T, Zheng M, Wang X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiale Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Tao Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| |
Collapse
|
22
|
Jiang H, Zang C, Cheng H, Sun B, Gao X. Photocatalytic green synthesis of benzazoles from alcohol oxidation/toluene sp 3 C–H activation over metal-free BCN: effect of crystallinity and N–B pair exposure. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01623g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous borocarbonitride, with characteristics of enhanced crystallinity and improved N–B pairs exposure, was employed for the heterogeneous photocatalytic tandem synthesis of benzazoles from alcohol oxidation/toluene sp3 C–H activation.
Collapse
Affiliation(s)
- Heyan Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Cuicui Zang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Hongmei Cheng
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Bin Sun
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Xue Gao
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| |
Collapse
|
23
|
Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Stroyuk OL, Kuchmy SY. Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: a Review. THEOR EXP CHEM+ 2020. [DOI: 10.1007/s11237-020-09648-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Qu W, Wang P, Gao M, Hasegawa JY, Shen Z, Wang Q, Li R, Zhang D. Delocalization Effect Promoted the Indoor Air Purification via Directly Unlocking the Ring-Opening Pathway of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9693-9701. [PMID: 32600034 DOI: 10.1021/acs.est.0c02906] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ring-opening process was generally considered as the rate-determining step for aromatic volatile organic compound photocatalytic degradation. A sophisticated and intensive degradation pathway is critical to the poor removal efficiency and low mineralization. In the present contribution, we successfully tailored and identified the ring-opening pathway of toluene elimination by electron delocalization in a borocarbonitride photocatalyst. By means of modulation of the dopant coordination configuration and electron geometry in the catalyst, the lone electrons of carbon transform into delocalized counterparts, sequentially elevating the interaction between the toluene molecules and photocatalyst. The aromatic ring of toluene can be attacked directly in the effect of electron delocalization without engendering additional intermediate species, significantly facilitating the removal and mineralization of toluene. This unprecedented route-control strategy alters the aromatic-ring-based reaction behavior from toluene to CO2 and paves a way to purify the refractory pollutants from the top design.
Collapse
Affiliation(s)
- Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Zhi Shen
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qing Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ruomei Li
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
27
|
Zheng M, Cai W, Fang Y, Wang X. Nanoscale boron carbonitride semiconductors for photoredox catalysis. NANOSCALE 2020; 12:3593-3604. [PMID: 32020138 DOI: 10.1039/c9nr09333h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conversion of solar energy to chemical energy achieved by photocatalysts comprising homogeneous transition-metal based systems, organic dyes, or semiconductors has received significant attention in recent years. Among these photocatalysts, boron carbon nitride (BCN) materials, as an emerging class of metal-free heterogeneous semiconductors, have extended the scope of photocatalysts due to their good performance and Earth abundance. The combination of boron (B), carbon (C), and nitrogen (N) constitutes a ternary system with large surface area and abundant activity sites, which together contribute to the good performance for reduction reactions, oxidation reactions and orchestrated both reduction and oxidation reactions. This Minireview reports the methods for the synthesis of nanoscale hexagonal boron carbonitride (h-BCN) and describes the latest advances in the application of h-BCN materials as semiconductor photocatalysts for sustainable photosynthesis, such as water splitting, reduction of CO2, acceptorless dehydrogenation, oxidation of sp3 C-H bonds, and sp2 C-H functionalization. h-BCN materials may have potential for applications in other organic transformations and industrial manufacture in the future.
Collapse
Affiliation(s)
- Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Wancang Cai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
28
|
Cao X, Han T, Peng Q, Chen C, Li Y. Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chem Commun (Camb) 2020; 56:13918-13932. [DOI: 10.1039/d0cc05785a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This feature article summarizes the recent progress in the modification of heterogeneous photocatalysts for photocatalytic hydrocarbons’ C–H bond activation.
Collapse
Affiliation(s)
- Xing Cao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Tong Han
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qing Peng
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chen Chen
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yadong Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|