1
|
Kim TS, O'Connor CR, Reece C. Interrogating site dependent kinetics over SiO 2-supported Pt nanoparticles. Nat Commun 2024; 15:2074. [PMID: 38453954 PMCID: PMC10920675 DOI: 10.1038/s41467-024-46496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
A detailed knowledge of reaction kinetics is key to the development of new more efficient heterogeneous catalytic processes. However, the ability to resolve site dependent kinetics has been largely limited to surface science experiments on model systems. Herein, we can bypass the pressure, materials, and temperature gaps, resolving and quantifying two distinct pathways for CO oxidation over SiO2-supported 2 nm Pt nanoparticles using transient pressure pulse experiments. We find that the pathway distribution directly correlates with the distribution of well-coordinated (e.g., terrace) and under-coordinated (e.g., edge, vertex) CO adsorption sites on the 2 nm Pt nanoparticles as measured by in situ DRIFTS. We conclude that well-coordinated sites follow classic Langmuir-Hinshelwood kinetics, but under-coordinated sites follow non-standard kinetics with CO oxidation being barrierless but conversely also slow. This fundamental method of kinetic site deconvolution is broadly applicable to other catalytic systems, affording bridging of the complexity gap in heterogeneous catalysis.
Collapse
Affiliation(s)
- Taek-Seung Kim
- Rowland Institute at Harvard, Harvard University, Cambridge, MA, 02142, USA
| | | | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, MA, 02142, USA.
| |
Collapse
|
2
|
Li X, Cheng J, Hou H, Meira DM, Liu L. Reactant-Induced Structural Evolution of Pt Catalysts Confined in Zeolite. JACS AU 2024; 4:666-679. [PMID: 38425920 PMCID: PMC10900205 DOI: 10.1021/jacsau.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Reactant-induced structural evolutions of heterogeneous metal catalysts are frequently observed in numerous catalytic systems, which can be associated with the formation or deactivation of active sites. In this work, we will show the structural transformation of subnanometer Pt clusters in pure-silica MFI zeolite structure in the presence of CO, O2, and/or H2O and the catalytic consequences of the Pt-zeolite materials derived from various treatment conditions. By applying the appropriate pretreatment under a reactant atmosphere, we can precisely modulate the size distribution of Pt species spanning from single Pt atoms to small Pt nanoparticles (1-5 nm) in the zeolite matrix, resulting in the desirably active and stable Pt species for CO oxidation. We also show the incorporation of Fe into the zeolite framework greatly promotes the stability of Pt species against undesired sintering under harsh conditions (up to 650 °C in the presence of CO, O2, and moisture).
Collapse
Affiliation(s)
- Xiaoyu Li
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinling Cheng
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaming Hou
- National
Energy Center for Coal to Clean Fuels, Synfuels
China Co., Ltd., Huairou
District, Beijing 101407, China
| | - Debora M. Meira
- CLS@APS
sector 20, Advanced Photon Source, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Canadian
Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Lichen Liu
- Engineering
Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wang H, Gao C, Wang R, Yuan J, Zhou B, Si W, Li J, Peng Y. Influence of Oxygen Vacancy-Induced Coordination Change on Pd/CeO 2 for NO Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2133-2143. [PMID: 38237035 DOI: 10.1021/acs.est.3c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The byproduct formation in environmental catalysis is strongly influenced by the chemical state and coordination of catalysts. Herein, two Pd/CeO2 catalysts (PdCe-350 and PdCe-800) with varying oxygen vacancies (Ov) and coordination numbers (CN) of Pd were prepared to investigate the mechanism of N2O and NH3 formation during NO reduction by CO. PdCe-350 exhibits a higher density of Ov and Pd sites with higher CN, leading to an enhanced metal-support interaction by electron transformation from the support to Pd. Consequently, PdCe-350 displayed increased levels of byproduct formation. In situ spectroscopies under dry and wet conditions revealed that at low temperatures, the N2O formation strongly correlated with the Ov density through the decomposition of chelating nitro species on PdCe-350. Conversely, at high temperatures, it was linked to the reactivity of Pd species, primarily facilitated by monodentate nitrates on PdCe-800. In terms of NH3 formation, its occurrence was closely associated with the activation of H2O and C3H6, since a water-gas shift or hydrocarbon reforming could provide hydrogen. Both bridging and monodentate nitrates showed activity in NH3 formation, while hyponitrites were identified as key intermediates for both catalysts. The insights provide a fundamental understanding of the intricate relationship among the local coordination of Pd, surface Ov, and byproduct distribution.
Collapse
Affiliation(s)
- Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Yuan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Duan X, Ying L, Li XY, Zhu B, Gao Y. High or Low Coordination: Insight into the Active Site of Pt Nanoparticles toward CO Oxidation. J Phys Chem Lett 2023; 14:9848-9854. [PMID: 37890150 DOI: 10.1021/acs.jpclett.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The catalytic activity of metal nanoparticles (NPs) is highly dependent on the coordination environment of the surface sites. Understanding the role of different sites in reactions is essential for gaining insights into catalytic activity and the precise design of catalysts. Herein, we used first-principles calculation-based kinetic Monte Carlo simulations to investigate correlations between different sites on Pt NPs in CO oxidation reactions. Low-coordinated (LC) sites favor the CO adsorption and reaction, whereas the oxygen mainly adsorbs on high-coordinated (HC) sites and diffuses to LC sites for reaction at low temperatures. Compared with step-dominated and terrace-dominated structures, the step-terrace structures exhibit higher activities. This reveals that the catalytic performance is not simply determined by the sites where the reaction occurs but is dramatically affected by the kinetic synergies between different sites. A proper way to optimize the activity of Pt catalysts is to balance the LC and HC sites.
Collapse
Affiliation(s)
- Xinyi Duan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ying
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Phonon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Phonon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
5
|
Liu Q, Yang P, Tan W, Yu H, Ji J, Wu C, Cai Y, Xie S, Liu F, Hong S, Ma K, Gao F, Dong L. Fabricating Robust Pt Clusters on Sn-Doped CeO 2 for CO Oxidation: A Deep Insight into Support Engineering and Surface Structural Evolution. Chemistry 2023; 29:e202203432. [PMID: 36567623 DOI: 10.1002/chem.202203432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.
Collapse
Affiliation(s)
- Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peng Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Song Hong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100027, China
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing, 211189, China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Jiang L, Tian C, Li Y, Si R, Du M, Li X, Guo L, Li L. NaCl-Templated Ultrathin 2D-Yttria Nanosheets Supported Pt Nanoparticles for Enhancing CO Oxidation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2306. [PMID: 35808141 PMCID: PMC9268161 DOI: 10.3390/nano12132306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Morphology of support is of fundamental significance to the fabrication of highly efficient catalysts for CO oxidation reaction. Many methods for the construction of supports with specific morphology and structures greatly rely on controlling general physical and chemical synthesis conditions such as temperature or pH. In this paper, we report a facile route to prepare yttria nanosheet using NaCl as template to support platinum nanoparticles exhibiting higher CO oxidation activity than that of the normally prepared Pt/Y2O3. With the help of TEM and SEM, we found that Pt NPs evenly distributed on the surface of NaCl modified 2D-nanosheets with smaller size. The combination of XAFS and TEM characterizations demonstrated that the nano-size Pt species with PtxOy structure played an essential role in the conversion of CO and kept steady during the CO oxidation process. Moreover, the Pt nanoparticles supported on the NaCl templated Y2O3 nanosheets could be more easily reduced and thus exposed more Pt sites to adsorb CO molecules for CO oxidation according to XPS and DRIFTS results. This work offers a unique and general method for the preparation of potential non-cerium oxide rare earth element oxide supported nanocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuhong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (L.J.); (C.T.); (Y.L.); (R.S.); (M.D.)
| | - Lingling Guo
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (L.J.); (C.T.); (Y.L.); (R.S.); (M.D.)
| | - Lina Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (L.J.); (C.T.); (Y.L.); (R.S.); (M.D.)
| |
Collapse
|
8
|
Bac S, Mallikarjun Sharada S. CO Oxidation with Atomically Dispersed Catalysts: Insights from the Energetic Span Model. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
9
|
Miao C, Zhang F, Cai L, Hui T, Feng J, Li D. Identification and Insight into the Role of Ultrathin LDH‐Induced Dual‐Interface Sites for Selective Cinnamaldehyde Hydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenglin Miao
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Luoyu Cai
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Tianli Hui
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Junting Feng
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| | - Dianqing Li
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology 15 Bei San Huan East Road Beijing 100029 P. R. China
| |
Collapse
|
10
|
Lee S, Ha H, Bae KT, Kim S, Choi H, Lee J, Kim JH, Seo J, Choi JS, Jo YR, Kim BJ, Yang Y, Lee KT, Kim HY, Jung W. A measure of active interfaces in supported catalysts for high-temperature reactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Chen W, Cao J, Yang J, Cao Y, Zhang H, Jiang Z, Zhang J, Qian G, Zhou X, Chen D, Yuan W, Duan X. Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation. Nat Commun 2021; 12:6888. [PMID: 34824271 PMCID: PMC8617298 DOI: 10.1038/s41467-021-27238-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
A molecular-level understanding of how the electronic structure of metal center tunes the catalytic behaviors remains a grand challenge in heterogeneous catalysis. Herein, we report an unconventional kinetics strategy for bridging the microscopic metal electronic structure and the macroscopic steady-state rate for CO oxidation over Pt catalysts. X-ray absorption and photoelectron spectroscopy as well as electron paramagnetic resonance investigations unambiguously reveal the tunable Pt electronic structures with well-designed carbon support surface chemistry. Diminishing the electron density of Pt consolidates the CO-assisted O2 dissociation pathway via the O*-O-C*-O intermediate directly observed by isotopic labeling studies and rationalized by density-functional theory calculations. A combined steady-state isotopic transient kinetic and in situ electronic analyses identifies Pt charge as the kinetics indicators by being closely related to the frequency factor, site coverage, and activation energy. Further incorporation of catalyst structural parameters yields a novel model for quantifying the electronic effects and predicting the catalytic performance. These could serve as a benchmark of catalyst design by a comprehensive kinetics study at the molecular level.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Junbo Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Jia Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
12
|
Activation of Pt Nanoclusters on TiO2 via Tuning the Metallic Sites to Promote Low-Temperature CO Oxidation. Catalysts 2021. [DOI: 10.3390/catal11111280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallic Pt sites are imperative in the CO oxidation reaction. Herein, we demonstrate the tuning of Pt sites by treating a Pt catalyst in various reductive atmospheres, influencing the catalyst activities in low-temperature CO oxidation. The H2 pretreatment of Pt clusters at 200 °C decreases the T50 from 208 °C to 183 °C in the 0.1 wt % Pt/TiO2 catalyst. The T50 shows a remarkable improvement using a CO pretreatment, which decreases the T50 further to 135 °C. A comprehensive characterization study reveals the integrated reasons behind this phenomenon: (i) the extent of PtO transition to metallic Pt sites, (ii) the ample surface active oxygen triggered by metallic Pt, (iii) the CO selectively adsorbs on metallic Pt sites which participate in low-temperature CO oxidation, and (iv) the formation of the unstable intermediate such as bicarbonate, contributes together to the enhanced activity of CO pretreated Pt/TiO2.
Collapse
|
13
|
Tan W, Xie S, Cai Y, Wang M, Yu S, Low KB, Li Y, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12607-12618. [PMID: 34495644 DOI: 10.1021/acs.est.1c02853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering surface defects on metal oxide supports could help promote the dispersion of active sites and catalytic performance of supported catalysts. Herein, a strategy of ZrO2 doping was proposed to create rich surface defects on CeO2 (CZO) and, with these defects, to improve Pt dispersion and enhance its affinity as single sites to the CZO support (Pt/CZO). The strongly anchored Pt single sites on CZO support were initially not efficient for catalytic oxidation of CO/C3H6. However, after a simple activation by H2 reduction, the catalytic oxidation performance over Pt/CZO catalyst was significantly boosted and better than Pt/CeO2. Pt/CZO catalyst also exhibited much higher thermal stability. The structural evolution of Pt active sites by H2 treatment was systematically investigated on aged Pt/CZO and Pt/CeO2 catalysts. With H2 reduction, ionic Pt single sites were transformed into active Pt clusters. Much smaller Pt clusters were created on CZO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm) due to stronger Pt-CeO2 interaction on aged Pt/CZO. Consequently, more exposed active Pt sites were obtained on the smaller clusters surrounded by more oxygen defects and Ce3+ species, which directly translated to the higher catalytic oxidation performance of activated Pt/CZO catalyst in vehicle emission control applications.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Yandi Cai
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Meiyu Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Shuohan Yu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Ke-Bin Low
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Yuejin Li
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Dong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
14
|
Nan B, Fu Q, Yu J, Shu M, Zhou LL, Li J, Wang WW, Jia CJ, Ma C, Chen JX, Li L, Si R. Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nat Commun 2021; 12:3342. [PMID: 34099668 PMCID: PMC8184822 DOI: 10.1038/s41467-021-23696-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
As the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt-1·s-1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt-O-Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.
Collapse
Affiliation(s)
- Bing Nan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jing Yu
- Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Miao Shu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Lu Zhou
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jinying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Chao Ma
- Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, China.
| | - Jun-Xiang Chen
- Division of China, TILON Group Technology Limited, Shanghai, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China
| | - Rui Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China.
| |
Collapse
|
15
|
Tan W, Liu A, Xie S, Yan Y, Shaw TE, Pu Y, Guo K, Li L, Yu S, Gao F, Liu F, Dong L. Ce-Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH 3-SCR Reaction through the Mechanism-Enhanced Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4017-4026. [PMID: 33656869 DOI: 10.1021/acs.est.0c08410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Investigating catalytic reaction mechanisms could help guide the design of catalysts. Here, aimed at improving both the catalytic performance and SO2 resistance ability of catalysts in the selective reduction of NO by NH3 (NH3-SCR), an innovative CeO2-SiO2 mixed oxide catalyst (CeSi2) was developed based on our understanding of both the sulfur poisoning and reaction mechanisms, which exhibited excellent SO2/H2O resistance ability even in the harsh working conditions (containing 500 ppm of SO2 and 5% H2O). The strong interaction between Ce and Si (Ce-O-Si) and the abundant surface hydroxyl groups on CeSi2 not only provided fruitful surface acid sites but also significantly inhibited SO2 adsorption. The NH3-SCR performance of CeSi2 was promoted by an enhanced Eley-Rideal (E-R) mechanism in which more active acid sites were preserved under the reaction conditions and gaseous NO could directly react with adsorbed NH3. This mechanism-enhanced process was even further promoted on sulfated CeSi2. This work provides a reaction mechanism-enhanced strategy to develop an environmentally friendly NH3-SCR catalyst with superior SO2 resistance.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | | | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Yong Yan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Thomas E Shaw
- Department of Chemistry, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | | | | | - Lulu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 Jiangsu, China
| | | | | | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | | |
Collapse
|
16
|
He W, Huang L, Liu C, Wang S, Long Z, Hu F, Sun Z. Interfacial sites in platinum-hydroxide-cobalt hybrid nanostructures for promoting CO oxidation activity. NANOSCALE 2021; 13:2593-2600. [PMID: 33480944 DOI: 10.1039/d0nr07880h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-oxide/hydroxide hybrid nanostructures provide an excellent platform to study the interfacial effects on tailoring the catalysis of metal catalysts. Herein, a hybrid nanostructure of Pt@Co(OH)2 supported on SiO2 was synthesized by incipient wetness impregnation of Co(OH)2 with the aid of H2O2 and successive urea-assisted deposition-precipitation of platinum nanoparticles. The Fenton-like reaction between Co2+ and H2O2 during the impregnation process facilitates the formation of active interfacial sites. This hybrid nanostructure exhibits much higher catalytic activity towards CO oxidation than Pt/SiO2 nanoparticles with a similar Pt loading and particle size. In situ diffuse reflectance infrared Fourier transform spectroscopy was used to track the CO adsorption processes and to identify the reaction intermediates during CO oxidation. It shows that the OH species at the Pt-OH-Co interfacial sites could readily react with CO adsorbed on neighboring Pt to yield CO2 by forming *COOH intermediates and oxygen vacancies. Under the CO + O2 oxidation conditions, O2 molecules are activated by the oxygen vacancy and react with the CO molecules adsorbed on Pt to generate CO2, via forming the highly active *OOH intermediates as observed by DRIFTS.
Collapse
Affiliation(s)
- Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Chengyong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Siyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhixin Long
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
17
|
Molecular insights into the hydrodenitrogenation mechanism of pyridine over Pt/γ-Al2O3 catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Huang L, Song X, Lin Y, Liu C, He W, Wang S, Long Z, Sun Z. In situ observations of the structural dynamics of platinum-cobalt-hydroxide nanocatalysts under CO oxidation. NANOSCALE 2020; 12:3273-3283. [PMID: 31971202 DOI: 10.1039/c9nr10950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The structures, compositions and chemical states of metal catalysts are prone to dynamic changes in response to reaction conditions. In this work, a combination of in situ X-ray absorption fine structure spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy has been used to monitor the temperature-dependent structural dynamics in bimetallic Pt-Co(OH)2 nanocatalysts during CO oxidation. Alloying with electron-donating Co promotes the catalytic activity of metallic Pt for CO oxidation at low temperature. At elevated temperatures under an oxidation atmosphere, O2 drives the segregation of the Pt-Co alloy into cobalt oxide and platinum metal, with the extent of alloying sharply decreasing from ∼30% at 300 K to 0 at 473 K. Reduction at high temperature could recover the formation of the Pt-Co alloy with the same alloying extent. The observed structural dynamics could be well correlated with the kinetic behavior of the catalysts. This work highlights the importance of tracking the dynamic structural changes of working catalysts for a correct understanding of their catalytic behavior.
Collapse
Affiliation(s)
- Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Xueyang Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chengyong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Siyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Zhixin Long
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China.
| |
Collapse
|
19
|
Yang W, Li L, Fang Y, Shan Y, Xu J, Shen H, Yu Y, Guo Y, He H. Interfacial structure-governed SO2 resistance of Cu/TiO2 catalysts in the catalytic oxidation of CO. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02405k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Different types of Cu–Ti interfacial structures determine different tolerance abilities of catalysts towards SO2 poisoning during CO oxidation at 250 °C.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Li Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yarong Fang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
- Beijing 100085
- China
| | - Jue Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Huan Shen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
- Beijing 100085
- China
| | - Yanbing Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- Institute of Environmental and Applied Chemistry
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
20
|
Liu L, Meira DM, Arenal R, Concepcion P, Puga AV, Corma A. Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites? ACS Catal 2019; 9:10626-10639. [PMID: 31840008 PMCID: PMC6902617 DOI: 10.1021/acscatal.9b04214] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/08/2019] [Indexed: 12/24/2022]
Abstract
![]()
Identification
of active sites in heterogeneous metal catalysts
is critical for understanding the reaction mechanism at the molecular
level and for designing more efficient catalysts. Because of their
structural flexibility, subnanometric metal catalysts, including single
atoms and clusters with a few atoms, can exhibit dynamic structural
evolution when interacting with substrate molecules, making it difficult
to determine the catalytically active sites. In this work, Pt catalysts
containing selected types of Pt entities (from single atoms to clusters
and nanoparticles) have been prepared, and their evolution has been
followed, while they were reacting in a variety of heterogeneous catalytic
reactions, including selective hydrogenation reactions, CO oxidation,
dehydrogenation of propane, and photocatalytic H2 evolution
reaction. By in situ X-ray absorption spectroscopy, in situ IR spectroscopy,
and high-resolution electron microscopy techniques, we will show that
some characterization techniques carried out in an inadequate way
can introduce confusion on the interpretation of coordination environment
of highly dispersed Pt species. Finally, the combination of catalytic
reactivity and in situ characterization techniques shows that, depending
on the catalyst–reactant interaction and metal–support
interaction, singly dispersed metal atoms can rapidly evolve into
metal clusters or nanoparticles, being the working active sites for
those abovementioned heterogeneous reactions.
Collapse
Affiliation(s)
- Lichen Liu
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Debora M. Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor Edificio I+D, 50018 Zaragoza, Spain
- ARAID Foundation, 50018 Zaragoza, Spain
- Instituto de Ciencias de Materiales de Aragon, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Patricia Concepcion
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Alberto V. Puga
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|