1
|
Cui CX, Peng J, Jiang J. Theoretical Study on the Mechanism of Cobalt-Catalyzed C-O Silylation and Stannylation. ACS OMEGA 2023; 8:23791-23798. [PMID: 37426225 PMCID: PMC10324068 DOI: 10.1021/acsomega.3c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Organosilicon and organotin compounds have been widely used in many fields, such as organic synthesis, materials science, and biochemistry, because of their unique physical and electronic properties. Recently, two novel compounds containing C-Si or C-Sn bonds have been synthesized. These compounds can be used for late modification of drug-like molecules such as probenecid, duloxetine, and fluoxetine derivatives. However, the detailed reaction mechanisms and the influencing factors that determine selectivity are still unclear. Moreover, several questions remain that are valuable to investigate further, such as (1) the influence of the solvent and the lithium salt on the reaction of the Si/Sn-Zn reagent, (2) the stereoselective functionalization of C-O bonds, and (3) the differences between silylation and stannylation. In the current study, we have explored the above issues with density functional theory and have found that stereoselectivity was most likely caused by the oxidative addition of cobalt to the C-O bond of alkenyl acetate with chelation assistance and that transmetalation was most likely the rate-determining step. For Sn-Zn reagents, the transmetalation was achieved by anion and cation pairs, whereas for Si-Zn reagents, the process was facilitated by Co-Zn complexes.
Collapse
Affiliation(s)
- Cheng-Xing Cui
- School
of Chemistry and Chemical Engineering, Institute of Computational
Chemistry, Henan Institute of Science and
Technology, Xinxiang, Henan 453003, P. R. China
- ZhengZhou
JiShu Institute of AI Science, Zhengzhou, Henan 451162, P. R. China
| | - Jiali Peng
- School
of Chemistry and Chemical Engineering, Institute of Computational
Chemistry, Henan Institute of Science and
Technology, Xinxiang, Henan 453003, P. R. China
- Engineering
Research Center of Organosilicon Compounds & Materials, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jun Jiang
- ZhengZhou
JiShu Institute of AI Science, Zhengzhou, Henan 451162, P. R. China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Yang L, Zhu L, Zhang S, Hong X. Machine Learning Prediction of
Structure‐Performance
Relationship in Organic Synthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li‐Cheng Yang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lu‐Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou Zhejiang 310027 China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2 Beijing 100190 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| |
Collapse
|
3
|
Ghorai D, Cristòfol À, Kleij AW. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Debasish Ghorai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluis Companys 23 08010– Barcelona Spain
| |
Collapse
|
4
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
5
|
|
6
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
7
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
8
|
Zhang SQ, Hong X. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bond Activation. Acc Chem Res 2021; 54:2158-2171. [PMID: 33826300 DOI: 10.1021/acs.accounts.1c00050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transition-metal-catalyzed C-O bond activation provides a useful strategy for utilizing alcohol- and phenol-derived electrophiles in cross-coupling reactions, which has become a research field of active and growing interest in organic chemistry. The synergy between computation and experiment elucidated the mechanistic model and controlling factors of selectivities in these transformations, leading to advances in innovative C-O bond activation and functionalization methods.Toward the rational design of C-O bond activation, our collaborations with the Jarvo group bridged the mechanistic models of C(sp2)-O and C(sp3)-O bond activations. We found that the nickel catalyst cleaves the benzylic and allylic C(sp3)-O bonds via two general mechanisms: the stereoinvertive SN2 back-side attack model and the stereoretentive chelation-assisted model. These two models control the stereochemistry in a wide array of stereospecific Ni-catalyzed cross-coupling reactions with benzylic or allylic alcohol derivatives. Because of the catalyst distortion, the ligands can differentiate the competing stereospecific C(sp3)-O bond activations. The PCy3 ligand interacts with nickel mainly through σ-donation, and the Ni(PCy3) catalyst can undergo facile bending of the substrate-nickel-ligand angle, which favors the stereoretentive benzylic C-O bond activation. The N-heterocyclic carbene SIMes ligand has additional d(metal)-p(ligand) back-donation with nickel, which leads to an extra energy penalty for the same angle bending. This results in the preference of stereoinvertive benzylic C-O bond activation under Ni/SIMes catalysis. In addition to ligand control, a Lewis acid can increase the selectivity for stereoinvertive C(sp3)-O activation by stabilizing the SN2 back-side attack transition state. The oxygen leaving group complexes with the MgI2 Lewis acid in the stereoinvertive activation, leading to the exclusive stereoinvertive Kumada coupling of benzylic ethers. We also identified that the competing C(sp3)-O bond activation models have noticeable differences in charge separation. This leads to the solvent polarity control of the stereospecificity in C(sp3)-O activations. Low-polarity solvents favor the neutral stereoretentive C-O bond activation, while high-polarity solvents favor the zwitterionic stereoinvertive cleavage.In sharp contrast to the nickel catalysts, the C(sp2)-O bond activation under palladium catalysis mainly proceeds via the classic three-membered ring oxidative addition mechanism instead of the chelation-assisted mechanism. This is due to the lower oxophilicity of palladium, which disfavors the oxygen coordination in the chelation-assisted-type activation. The three-membered ring activation model selectively cleaves the weak C-O bond, resulting in the exclusive chemoselectivity of acyl C-O bond activation in Pd-catalyzed cross-coupling reactions with aryl carboxylic acid derivatives. This explains the overall acylation in the Pd-catalyzed Suzuki-Miyaura coupling with aryl esters. In collaboration with the Szostak group, we revealed that the three-membered ring model applies in the Pd-catalyzed C-O bond activation of carboxylic acid anhydride, which stimulated the development of a series of Pd-catalyzed decarbonylative functionalizations of aryl carboxylic acids.
Collapse
Affiliation(s)
- Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Xu J, Bercher OP, Talley MR, Watson MP. Nickel-Catalyzed, Stereospecific C-C and C-B Cross-Couplings via C-N and C-O Bond Activation. ACS Catal 2021; 11:1604-1612. [PMID: 33986970 DOI: 10.1021/acscatal.0c05484] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly enantioenriched benzylic and allylic amines and alcohols are readily available via asymmetric synthesis and in complex natural products. The development of mild, nickel-catalyzed cross-couplings of their derivatives has advanced the tools available for the preparation of a range of highly enantioenriched products, including those with quaternary stereocenters. This perspective focuses on cross-couplings with convenient and functional group-tolerant organoboron reagents and highlights the discoveries of activating groups and conditions that have led to high-yielding and highly stereospecific reactions. Emphasis is placed on mechanistic understanding, particularly with regards to controlling inversion vs. retention pathways. Limitations and opportunities for future developments are also highlighted.
Collapse
Affiliation(s)
- Jianyu Xu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Olivia P. Bercher
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Michael R. Talley
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Bian JH, Tong WY, Pitsch CE, Wu YB, Wang X. Mechanism of nickel-catalyzed direct carbonyl-Heck coupling reaction: the crucial role of second-sphere interactions. Dalton Trans 2021; 50:2654-2662. [PMID: 33527940 DOI: 10.1039/d0dt04121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present a detailed DFT mechanistic study on the first Ni-catalyzed direct carbonyl-Heck coupling of aryl triflates and aldehydes to afford ketones. The precatalyst Ni(COD)2 is activated with the phosphine (phos) ligand, followed by coordination of the substrate PhOTf, to form [Ni(phos)(PhOTf)] for intramolecular PhOTf to Ni(0) oxidative addition. The ensuing phenyl-Ni(ii) triflate complex substitutes benzaldehyde for triflate by an interchange mechanism, leaving the triflate anion in the second coordination sphere held by Coulomb attraction. The Ni(ii) complex cation undergoes benzaldehyde C[double bond, length as m-dash]O insertion into the Ni-Ph bond, followed by β-hydride elimination, to produce Ni(ii)-bound benzophenone, which is released by interchange with triflate. The resulting neutral Ni(ii) hydride complex leads to regeneration of the active catalyst following base-mediated deprotonation/reduction. The benzaldehyde C[double bond, length as m-dash]O insertion is the rate-determining step. The triflate anion, while remaining in the second sphere, engages in electrostatic interactions with the first sphere, thereby stabilizing the intermediate/transition state and enabling the desired reactivity. This is the first time that such second-sphere interaction and its impact on cross-coupling reactivity has been elucidated. The new insights gained from this study can help better understand and improve Heck-type reactions.
Collapse
Affiliation(s)
- Jian-Hong Bian
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Wen-Yan Tong
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chloe E Pitsch
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| | - Yan-Bo Wu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China and Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| |
Collapse
|
11
|
Wang Y, Qiao Y, Lan Y, Wei D. Predicting the origin of selectivity in NHC-catalyzed ring opening of formylcyclopropane: a theoretical investigation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01768j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using density functional theory, we investigated the origin of selectivity in the N-heterocyclic carbene (NHC)-catalyzed transformation of formylcyclopropane with an alkylidene oxindole.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yu Lan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
12
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
13
|
Abstract
The mechanism of nickel-catalyzed hydroarylation of styrenes has been explored with density functional theory. Instead of the stepwise pathway via a Ni(II)-H species, computational results unveil that the concerted RO-H oxidative addition/olefin insertion takes place kinetically favorable to generate the alkylnickel(II) species, which further undergoes transmetalation and reductive elimination to yield the hydroarylated product. The origins of regio- and stereoselectivity were revealed via analyzing the electronic and steric effects of the key transition states.
Collapse
Affiliation(s)
- Qi Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Qiao JB, Zhao ZZ, Zhang YQ, Yin K, Tian ZX, Shu XZ. Allylboronates from Vinyl Triflates and α-Chloroboronates by Reductive Nickel Catalysis. Org Lett 2020; 22:5085-5089. [DOI: 10.1021/acs.orglett.0c01683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jin-Bao Qiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University. 222 South Tian Shui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University. 222 South Tian Shui Road, Lanzhou 730000, China
| | - Ya-Qian Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University. 222 South Tian Shui Road, Lanzhou 730000, China
| | - Kai Yin
- Shangyu Economic and Technological Development Zone, Zhejiang Nanjiao Chemistry Co., Ltd., Shangyu 312369, China
| | - Zhi-Xiong Tian
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University. 222 South Tian Shui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University. 222 South Tian Shui Road, Lanzhou 730000, China
| |
Collapse
|
15
|
Li R, Xu H, Zhao N, Jin X, Dang Y. Origins of Chemoselectivity in the Ni-Catalyzed Biaryl and Pd-Catalyzed Acyl Suzuki–Miyaura Cross-Coupling of N-Acetyl-Amides. J Org Chem 2019; 85:833-840. [DOI: 10.1021/acs.joc.9b02826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Riqing Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Ning Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiaojiao Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Liu F, Zhu L, Zhang T, Zhong K, Xiong Q, Shen B, Liu S, Lan Y, Bai R. Nucleophilicity versus Brønsted Basicity Controlled Chemoselectivity: Mechanistic Insight into Silver- or Scandium-Catalyzed Diazo Functionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fenru Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Qin Xiong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Boming Shen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|