1
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Frost CF, Balasubramani SG, Antoniou D, Schwartz SD. Connecting Conformational Motions to Rapid Dynamics in Human Purine Nucleoside Phosphorylase. J Phys Chem B 2023; 127:144-150. [PMID: 36538016 PMCID: PMC9873402 DOI: 10.1021/acs.jpcb.2c07243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influence of protein motions on enzyme catalysis remains a topic of active discussion. Protein motions occur across a variety of time scales, from vibrational fluctuations in femtoseconds, to collective motions in milliseconds. There have been numerous studies that show conformational motions may assist in catalysis, protein folding, and substrate specificity. It is also known through transition path sampling studies that rapid promoting vibrations contribute to enzyme catalysis. Human purine nucleoside phosphorylase (PNP) is one enzyme that contains both an important conformational motion and a rapid promoting vibration. The slower motion in this enzyme is associated with a loop motion, that when open allows substrate entry and product release but closes over the active site during catalysis. We examine the differences between an unconstrained PNP structure and a PNP structure with constraints on the loop motion. To investigate possible coupling between the slow and fast protein dynamics, we employed transition path sampling, reaction coordinate identification, electric field calculations, and free energy calculations reported here.
Collapse
Affiliation(s)
- Clara F Frost
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| | | | - Dimitri Antoniou
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| | - Steven D Schwartz
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, Arizona85721, United States
| |
Collapse
|
3
|
Abstract
This Perspective reviews the use of Transition Path Sampling methods to study enzymatically catalyzed chemical reactions. First applied by our group to an enzymatic reaction over 15 years ago, the method has uncovered basic principles in enzymatic catalysis such as the protein promoting vibration, and it has also helped harmonize such ideas as electrostatic preorganization with dynamic views of enzyme function. It is now being used to help uncover principles of protein design necessary to artificial enzyme creation.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry University of Arizona Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Schafer JW, Chen X, Schwartz SD. Engineered Tryptophan Synthase Balances Equilibrium Effects and Fast Dynamic Effects. ACS Catal 2022; 12:913-922. [PMID: 35719741 PMCID: PMC9202816 DOI: 10.1021/acscatal.1c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Creating efficient and stable enzymes for catalysis in pharmaceutical and industrial laboratories is an important research goal. Arnold et al. used directed evolution to engineer a natural tryptophan synthase to create a mutant that is operable under laboratory conditions without the need for a natural allosteric effector. The use of directed evolution allows researchers to improve enzymes without understanding the structure-activity relationship. Here, we present a transition path sampling study of a key chemical transformation in the tryptophan synthase catalytic cycle. We observed that while directed evolution does mimic the natural allosteric effect from a stability perspective, fast protein dynamics associated with chemistry has been dramatically altered. This work provides further evidence of the role of protein dynamics in catalysis and clearly demonstrates the multifaceted complexity of mutations associated with protein engineering. This study also demonstrates a fascinating contrast between allosteric and stand-alone functions at the femtosecond time scale.
Collapse
Affiliation(s)
- Joseph W Schafer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xi Chen
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Kędzierski P, Moskal M, Sokalski WA. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps. J Phys Chem B 2021; 125:11606-11616. [PMID: 34648705 PMCID: PMC8558854 DOI: 10.1021/acs.jpcb.1c05256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Catalytic fields representing the topology of the optimal molecular environment charge distribution that reduces the activation barrier have been used to examine alternative reaction variants and to determine the role of conserved catalytic residues for two consecutive reactions catalyzed by the same enzyme. Until now, most experimental and conventional top-down theoretical studies employing QM/MM or ONIOM methods have focused on the role of enzyme electric fields acting on broken bonds of reactants. In contrast, our bottom-up approach dealing with a small reactant and transition-state model allows the analysis of the opposite effects: how the catalytic field resulting from the charge redistribution during the enzyme reaction acts on conserved amino acid residues and contributes to the reduction of the activation barrier. This approach has been applied to the family of histidyl tRNA synthetases involved in the translation of the genetic code into the protein amino acid sequence. Activation energy changes related to conserved charged amino acid residues for 12 histidyl tRNA synthetases from different biological species allowed to compare on equal footing the catalytic residues involved in ATP aminoacylation and tRNA charging reactions and to analyze different reaction mechanisms proposed in the literature. A scan of the library of atomic multipoles for amino acid side-chain rotamers within the catalytic field pointed out the change in the Glu83 conformation as the critical catalytic effect, providing, at low computational cost, insight into the electrostatic preorganization of the enzyme catalytic site at a level of detail that has not yet been accessible in conventional experimental or theoretical methods. This opens the way for rational reverse biocatalyst design at a very limited computational cost without resorting to empirical methods.
Collapse
Affiliation(s)
- Paweł Kędzierski
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Martyna Moskal
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - W. Andrzej Sokalski
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
6
|
Summers TJ, Cheng Q, Palma MA, Pham DT, Kelso DK, Webster CE, DeYonker NJ. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study. Biophys J 2021; 120:3577-3587. [PMID: 34358526 DOI: 10.1016/j.bpj.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Qianyi Cheng
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Manuel A Palma
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Diem-Trang Pham
- Department of Chemistry, The University of Memphis, Memphis, Tennessee; Department of Computer Science, The University of Memphis, Memphis, Tennessee
| | - Dudley K Kelso
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
7
|
Baldo AP, Tardiff JC, Schwartz SD. Mechanochemical Function of Myosin II: Investigation into the Recovery Stroke and ATP Hydrolysis. J Phys Chem B 2020; 124:10014-10023. [PMID: 33136401 PMCID: PMC7696650 DOI: 10.1021/acs.jpcb.0c05762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myosin regulates muscle function through a complex cycle of conformational rearrangements coupled with the hydrolysis of adenosine triphosphate (ATP). The recovery stroke reorganizes the myosin active site to hydrolyze ATP and cross bridge with the thin filament to produce muscle contraction. Engineered mutations K84M and R704E in Dictyostelium myosin have been designed to specifically inhibit the recovery stroke and have been shown to indirectly affect the ATPase activity of myosin. We investigated these mutagenic perturbations to the recovery stroke and generated thermodynamically correct and unbiased trajectories for native ATP hydrolysis with computationally enhanced sampling methods. Our methodology was able to resolve experimentally observed changes to kinetic and equilibrium dynamics for the recovery stroke with the correct prediction in the severity of these changes. For ATP hydrolysis, the sequential nature along with the stabilization of a metaphosphate intermediate was observed in agreement with previous studies. However, we observed glutamate 459 being utilized as a proton abstractor to prime the attacking water instead of a lytic water, a phenomenon not well categorized in myosin but has in other ATPases. Both rare event methodologies can be extended to human myosin to investigate isoformic differences from Dictyostelium and scan cardiomyopathic mutations to see differential perturbations to kinetics of other conformational changes in myosin such as the power stroke.
Collapse
Affiliation(s)
- Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Liu F, Zhang J. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study. J Biochem 2020; 168:417-425. [DOI: 10.1093/jb/mvaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023] Open
Abstract
AbstractHuman catechol-O-methyltransferase, a key enzyme related to neurotransmitter metabolism, catalyses a methyl transfer from S-adenosylmethionine to catechol. Although extensive studies aim to understand the enzyme mechanisms, the connection of protein dynamics and enzyme catalysis is still not clear. Here, W38in (Trp143Phe) and W38in/Y68A (Trp143Phe with Tyr68Ala) mutants were carried out to study the relationship of dynamics and catalysis in nano-second timescale using time-resolved fluorescence lifetimes and Stokes shifts in various solvents. The comprehensive data implied the mutant W38in/Y68A with lower activity is more rigid than the ‘WT’−W38in, suggesting the importance of flexibility at residue 38 to maintain the optimal catalysis.
Collapse
Affiliation(s)
- Fan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
9
|
Roca M, Williams IH. Transition-State Vibrational Analysis and Isotope Effects for COMT-Catalyzed Methyl Transfer. J Am Chem Soc 2020; 142:15548-15559. [PMID: 32812761 PMCID: PMC7498148 DOI: 10.1021/jacs.0c07344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotopic partition-function ratios (IPFRs) computed for transition structures (TSs) of the methyl-transfer reaction catalyzed by catechol O-methyltransferase and modeled by hybrid QM/MM methods are analyzed. The ability of smaller Hessians to reproduce trends in α-3H3 and 14Cα IPFRs as obtained using the much larger subset QM/MM Hessians from which they are extracted is investigated critically. A 6-atom-extracted Hessian reproduces perfectly the α-T3 IPFR values from the full-subset Hessians of all the TSs but not the α-14CIPFRs. Average AM1/OPLS-AA harmonic frequencies and mean-square amplitudes are presented for the 12 normal modes of the α-CH3 moiety within the active site of several enzymic transition structures, together with QM/MM potential energy scans along each of these modes to assess the degree of anharmonicity. A novel investigation of ponderal effects upon IPFRs suggests that the value for α-14C tends toward a limiting minimum whereas that for α-T3 tends toward a limiting maximum as the mass of the rest of the system increases. The transition vector is dominated by motions of atoms within the donor and acceptor moieties and is very well described as a simple combination of Walden-inversion "umbrella" bending and asymmetric stretching of the SCα and CαO bonds. The contribution of atoms of the protein residues Met40, Tyr68, and Asp141 to the transition vector is extremely small. Average valence force constants for the COMT TS show significant differences from early BEBOVIB estimates which were used in support of the compression hypothesis for catalysis. There is no correlation between TS IPFRs and the nonbonded distances for close contacts between the S atom of SAM and Tyr68 or between any of the H atoms of the transferring methyl group and either Met40 or Asp141.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Ian H Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
10
|
Schafer JW, Schwartz SD. Directed Evolution's Influence on Rapid Density Fluctuations Illustrates How Protein Dynamics Can Become Coupled to Chemistry. ACS Catal 2020; 10:8476-8484. [PMID: 33163256 DOI: 10.1021/acscatal.0c01618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein engineering is a growing field with a variety of experimental techniques available for altering protein function. However, creating an enzyme de novo is still in its infancy, so far yielding enzymes of modest catalytic efficiency. In this study, a system of artificial retro-aldolase enzymes found to have chemistry coupled to protein dynamics was examined. The original design was created computationally, and this protein was then subjected to directed evolution to improve the initial low catalytic efficiency. We found that this re-engineering of the enzyme resulted in rapid density fluctuations throughout the enzyme being reshaped via alterations in the hydrogen bonding network. This work also led to the discovery of a second important motion which aids in the release of an intermediate product. These results provide compelling evidence that to engineer efficient protein catalysts, fast protein dynamics need to be considered in the design.
Collapse
Affiliation(s)
- Joseph W. Schafer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|