1
|
Chang X, Zhang T, Zang J, Lv C, Zhao G. Characterization and Structural Analyses of Enolase from Shrimp ( Litopenaeus vannamei). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19783-19790. [PMID: 38033172 DOI: 10.1021/acs.jafc.3c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Transcriptome analysis had recognized enolase from shrimp Litopenaeus vannamei (L. vannamei), which is termed LvEnolase, as one of the allergens, but its amino acid sequence and protein structure have been lacking. In this study, natural LvEnolase was isolated from L. vannamei and characterized for the first time. The full-length cDNA sequence of LvEnolase was effectively cloned, which encoded 434 amino acid residues. The crystal structure of LvEnolase was successfully determined at a resolution of 2.5 Å by X-ray crystallography (PDB: 8UEL). Notably, it was observed that near the active center, a loop exists in either an open or closed state, and the open loop was associated with the product release phase. Furthermore, enzyme activity assays were conducted to validate the catalytic capabilities of purified LvEnolase. These findings significantly enhance our comprehension of the enolase family and provide valuable support for delving into the functions and characteristics of LvEnolase.
Collapse
Affiliation(s)
- Xiaoxi Chang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Ahmad M, Jha B, Bose S, Tiwari S, Dwivedy A, Kar D, Pal R, Mariadasse R, Parish T, Jeyakanthan J, Vinothkumar KR, Biswal BK. Structural snapshots of Mycobacterium tuberculosis enolase reveal dual mode of 2PG binding and its implication in enzyme catalysis. IUCRJ 2023; 10:738-753. [PMID: 37860976 PMCID: PMC10619443 DOI: 10.1107/s2052252523008485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Enolase, a ubiquitous enzyme, catalyzes the reversible conversion of 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the glycolytic pathway of organisms of all three domains of life. The underlying mechanism of the 2PG to PEP conversion has been studied in great detail in previous work, however that of the reverse reaction remains to be explored. Here we present structural snapshots of Mycobacterium tuberculosis (Mtb) enolase in apo, PEP-bound and two 2PG-bound forms as it catalyzes the conversion of PEP to 2PG. The two 2PG-bound complex structures differed in the conformation of the bound product (2PG) viz the widely reported canonical conformation and a novel binding pose, which we refer to here as the alternate conformation. Notably, we observed two major differences compared with the forward reaction: the presence of MgB is non-obligatory for the reaction and 2PG assumes an alternate conformation that is likely to facilitate its dissociation from the active site. Molecular dynamics studies and binding free energy calculations further substantiate that the alternate conformation of 2PG causes distortions in both metal ion coordination and hydrogen-bonding interactions, resulting in an increased flexibility of the active-site loops and aiding product release. Taken together, this study presents a probable mechanism involved in PEP to 2PG catalysis that is likely to be mediated by the conformational change of 2PG at the active site.
Collapse
Affiliation(s)
- Mohammed Ahmad
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhavya Jha
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Zoology, GDM Mahavidyalaya, Patliputra University, Patna 800020, India
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Satish Tiwari
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhisek Dwivedy
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepshikha Kar
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravikant Pal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Richard Mariadasse
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Tanya Parish
- Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA 98102, USA
- Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Bichitra Kumar Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Xu YD, Guo YJ, Mao HR, Xiong ZX, Luo MY, Luo RQ, Lu S, Huang L, Hong Y. Integration of transcriptomics and proteomics to elucidate inhibitory effect and mechanism of rosmarinic acid from Perilla frutescens (L.) Britt. in treating Trichophyton mentagrophytes. Chin Med 2023; 18:67. [PMID: 37280712 DOI: 10.1186/s13020-023-00772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chinese Medicine and modern pharmacological studies have shown that it has potential anti-fungi activity. This is the first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and proteomics. METHODS Five most potential inhibitory compounds against fungi in P. frutescens was screened with network pharmacology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investigate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, the real-time polymerase chain reaction (PCR) was applied to verify the expression of genes. RESULTS The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: progesterone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes by interfering with the expression of enolase in the glycolysis pathway. Comparison of real-time PCR and transcriptomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary explored by molecular docking analysis. CONCLUSION The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention and treatment of dermatophytes.
Collapse
Affiliation(s)
- Yang-Ding Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Jie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - He-Rong Mao
- International Center for TCM Communication Studies, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhi-Xiang Xiong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Meng-Yu Luo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Rui-Qi Luo
- School of Foreign Languages, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lu Huang
- Guangzhou Wellhealth Bio-Pharmaceutical CO., Ltd, Guangzhou, 510200, China.
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
4
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN. Enolase in Meyerozyma guilliermondii strain SO: Sequential and structural insights of MgEno4581 as a putative virulence factor and host-fungal interactions through comprehensive in silico approaches. Microb Pathog 2023; 176:106025. [PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
Collapse
Affiliation(s)
- Alia Iwani Amran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Maia LBL, Pereira HD, Garratt RC, Brandão-Neto J, Henrique-Silva F, Toyama D, Dias RO, Bachega JFR, Peixoto JV, Silva-Filho MC. Structural and Evolutionary Analyses of PR-4 SUGARWINs Points to a Different Pattern of Protein Function. FRONTIERS IN PLANT SCIENCE 2021; 12:734248. [PMID: 34567046 PMCID: PMC8458871 DOI: 10.3389/fpls.2021.734248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
SUGARWINs are PR-4 proteins associated with sugarcane defense against phytopathogens. Their expression is induced in response to damage by Diatraea saccharalis larvae. These proteins play an important role in plant defense, in particular against fungal pathogens, such as Colletothricum falcatum (Went) and Fusarium verticillioides. The pathogenesis-related protein-4 (PR-4) family is a group of proteins equipped with a BARWIN domain, which may be associated with a chitin-binding domain also known as the hevein-like domain. Several PR-4 proteins exhibit both chitinase and RNase activity, with the latter being associated with the presence of two histidine residues H11 and H113 (BARWIN) [H44 and H146, SUGARWINs] in the BARWIN-like domain. In sugarcane, similar to other PR-4 proteins, SUGARWIN1 exhibits ribonuclease, chitosanase and chitinase activities, whereas SUGARWIN2 only exhibits chitosanase activity. In order to decipher the structural determinants involved in this diverse range of enzyme specificities, we determined the 3-D structure of SUGARWIN2, at 1.55Å by X-ray diffraction. This is the first structure of a PR-4 protein where the first histidine has been replaced by asparagine and was subsequently used to build a homology model for SUGARWIN1. Molecular dynamics simulations of both proteins revealed the presence of a flexible loop only in SUGARWIN1 and we postulate that this, together with the presence of the catalytic histidine at position 42, renders it competent as a ribonuclease. The more electropositive surface potential of SUGARWIN1 would also be expected to favor complex formation with RNA. A phylogenetic analysis of PR-4 proteins obtained from 106 Embryophyta genomes showed that both catalytic histidines are widespread among them with few replacements in these amino acid positions during the gene family evolutionary history. We observe that the H11 replacement by N11 is also present in two other sugarcane PR-4 proteins: SUGARWIN3 and SUGARWIN4. We propose that RNase activity was present in the first Embryophyta PR-4 proteins but was recently lost in members of this family during the course of evolution.
Collapse
Affiliation(s)
| | | | | | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus Didcot, Harwell, United Kingdom
| | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Renata O. Dias
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - José Fernando Ruggiero Bachega
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Vasconcellos Peixoto
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio C. Silva-Filho
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
7
|
Thompson EJ, Paul A, Iavarone AT, Klinman JP. Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase. J Am Chem Soc 2021; 143:785-797. [PMID: 33395523 DOI: 10.1021/jacs.0c09423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here on the salient role of protein mobility in accessing conformational landscapes that enable efficient enzyme catalysis. We are focused on yeast enolase, a highly conserved lyase with a TIM barrel domain and catalytic loop, as part of a larger study of the relationship of site selective protein motions to chemical reactivity within superfamilies. Enthalpically hindered variants were developed by replacement of a conserved hydrophobic side chain (Leu 343) with smaller side chains. Leu343 is proximal to the active site base in enolase, and comparative pH rate profiles for the valine and alanine variants indicate a role for side chain hydrophobicity in tuning the pKa of the catalytic base. However, the magnitude of a substrate deuterium isotope effect is almost identical for wild-type (WT) and Leu343Ala, supporting an unchanged rate-determining proton abstraction step. The introduced hydrophobic side chains at position 343 lead to a discontinuous break in both activity and activation energy as a function of side chain volume. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments were performed as a function of time and temperature for WT and Leu343Ala, and provide a spatially resolved map of changes in protein flexibility following mutation. Impacts on protein flexibility are localized to specific networks that arise at the protein-solvent interface and terminate in a loop that has been shown by X-ray crystallography to close over the active site. These interrelated effects are discussed in the context of long-range, solvent-accessible and thermally activated networks that play key roles in tuning the precise distances and interactions among reactants.
Collapse
Affiliation(s)
- Emily J Thompson
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Adhayana Paul
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Wang L, Liu R, Li F, Meng Y, Lu H. Unveiling the novel characteristics of IGPD polymer and inhibitors binding affinities using 12-6-4 LJ-type nonbonded Mn2+ model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|