1
|
Yang H, Li C, Lü L, Li Z, Zhang S, Huang Z, Ma R, Liu S, Ge M, Zhou W, Yuan X. Electronegativity- induced cobalt-doped platinum hollow nanospheres with high CO tolerance for efficient methanol oxidation reaction. J Colloid Interface Sci 2025; 678:300-308. [PMID: 39298982 DOI: 10.1016/j.jcis.2024.09.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although Platinum (Pt)-based alloys have garnered significant interest within the realm of direct methanol fuel cells (DMFCs), there still exists a notable dearth in the exploration of the catalytic behavior of the liquid fuels on well-defined active sites and unavoidable Pt poisoning because of the adsorbed CO species (COads). Here, we propose an electronegativity-induced electronic redistribution strategy to optimize the adsorption of crucial intermediates for the methanol oxidation reaction (MOR) by introducing the Co element to form the PtCo alloys. The optimal PtCo hollow nanospheres (HNSs) exhibit excellent high-quality activity of 3.27 A mgPt-1, which is 11.6 times and 13.1 times higher than that of Pt/C and pure Pt, respectively. The in-situ Fourier transform infrared reflection spectroscopy validates that electron redistribution could weak CO adsorption, and subsequently decrease the CO poisoning adjacent the Pt active sites. Theoretical simulations result show that the introduction of Co optimize surface electronic structure and reduce the d-band center of Pt, thus optimized the adsorption behavior of COads. This study not only employs a straightforward method for the preparation of Pt-based alloys but also delineates a pathway toward designing advanced active sites for MOR via electronegativity-induced electronic redistribution.
Collapse
Affiliation(s)
- Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Linzhe Lü
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhuogen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China.
| | - Zheng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; Suzhou Laboratory, Suzhou 215000, China.
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
3
|
Janusz JN, Beeler JA, Hosseini S, Tanwar M, Zeng R, Wang H, Abruña HD, Neurock M, White HS. The Electrochemical Peroxydisulfate-Oxalate Autocatalytic Reaction. J Am Chem Soc 2024; 146:25088-25100. [PMID: 39186684 DOI: 10.1021/jacs.4c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Aqueous solutions containing both the strong oxidant, peroxydisulfate (S2O82-), and the strong reductant, oxalate (C2O42-), are thermodynamically unstable due to the highly exothermic homogeneous redox reaction: S2O82- + C2O42- → 2 SO42- + 2 CO2 (ΔG0 = -490 kJ/mol). However, at room temperature, this reaction does not occur to a significant extent over the time scale of a day due to its inherently slow kinetics. We demonstrate that the S2O82-/C2O42- redox reaction occurs rapidly, once initiated by the Ru(NH3)62+-mediated 1e- reduction of S2O82- to form S2O83•-, which rapidly undergoes bond cleavage to form SO42- and the highly oxidizing radical SO4•-. Theoretically, the mediated electrochemical generation of a single molecule of S2O83•- can initiate an autocatalytic cycle that consumes both S2O82- and C2O42- in bulk solution. Several experimental demonstrations of S2O82-/C2O42- autocatalysis are presented. Differential electrochemical mass spectrometry measurements demonstrate that CO2 is generated in solution for at least 10 min following a 30-s initiation step. Quantitative bulk electrolysis of S2O82- in solutions containing excess C2O42- is initiated by electrogeneration of immeasurably small quantities of S2O83•-. Capture of CO2 as BaCO3 during electrolysis additionally confirms the autocatalytic generation of CO2. First-principles density functional theory calculations, ab initio molecular dynamics simulations, and finite difference simulations of cyclic voltammetric responses are presented that support and provide additional insights into the initiation and mechanism of S2O82-/C2O42- autocatalysis. Preliminary evidence indicates that autocatalysis also results in a chemical traveling reaction front that propagates into the solution normal to the planar electrode surface.
Collapse
Affiliation(s)
- Jordyn N Janusz
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua A Beeler
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | - Mayank Tanwar
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
5
|
Lv Y, Liu P, Xue R, Guo Q, Ye J, Gao D, Jiang G, Zhao S, Xie L, Ren Y, Zhang P, Wang Y, Qin Y. Cascaded p-d Orbital Hybridization Interaction in Ultrathin High-Entropy Alloy Nanowires Boosts Complete Non-CO Pathway of Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309813. [PMID: 38482730 PMCID: PMC11109631 DOI: 10.1002/advs.202309813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 05/23/2024]
Abstract
Designing high efficiency platinum (Pt)-based catalysts for methanol oxidation reaction (MOR) with high "non-CO" pathway selectivity is strongly desired and remains a grand challenge. Herein, PtRuNiCoFeGaPbW HEA ultrathin nanowires (HEA-8 UNWs) are synthesized, featuring unique cascaded p-d orbital hybridization interaction by inducing dual p-block metals (Ga and Pb). In comparison with Pt/C, HEA-8 UNWs exhibit 15.0- and 4.2-times promotion of specific and mass activity for MOR. More importantly, electrochemical in situ FITR spectroscopy reveals that the production/adsorption of CO (CO*) intermediate is effectively avoided on HEA-8 UNWs, leading to the complete "non-CO" pathway for MOR. Theoretical calculations demonstrate the optimized electronic structure of HEA-8 UNWs can facilitates a lower energy barrier for the "non-CO" pathway in the MOR.
Collapse
Affiliation(s)
- Yipin Lv
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Pei Liu
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Ruixin Xue
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Qiudi Guo
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Jinyu Ye
- College of Chemistry and Chemical EngineeringXiamen University XiamenFujian361005P. R. China
| | - Daowei Gao
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Guangce Jiang
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Shiju Zhao
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Lixia Xie
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Yunlai Ren
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell TechnologyLiaocheng UniversityLiaocheng252000P. R. China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringInternational Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxi214122P. R. China
| | - Yuchen Qin
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| |
Collapse
|
6
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Gong Y, He T. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. SMALL METHODS 2023; 7:e2300702. [PMID: 37608449 DOI: 10.1002/smtd.202300702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.
Collapse
Affiliation(s)
- Yue Gong
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao He
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207519. [PMID: 36866927 PMCID: PMC10161082 DOI: 10.1002/advs.202207519] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yaoyu Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Zhikeng Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Biying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Meng Chen
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Guoqing Guan
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
9
|
Cheng J, Lyu C, Dong G, Liu Y, Hu Y, Han B, Geng D, Zhao D. The Underlying Mechanism Trade-Off between Particle Proximity Effect and Low-Pt Loading for Oxygen Reduction and Methanol Oxidation Reaction Activity. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Zhu R, Yu R, Yin K, Zhang S, Chung-Yen Jung J, Zhao Y, Li M, Xia Z, Zhang J. Integration of multiple advantages into one catalyst: non-CO pathway of methanol oxidation electrocatalysis on surface Ir-modulated PtFeIr jagged nanowires. J Colloid Interface Sci 2023; 640:348-358. [PMID: 36867931 DOI: 10.1016/j.jcis.2023.02.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Developing highly active methanol oxidation electrocatalysts with superior anti-CO poisoning capability remains a grand challenge. Herein, a simple strategy was employed to prepare distinctive PtFeIr jagged nanowires with Ir located at the shell and Pt/Fe located at the core. The Pt64Fe20Ir16 jagged nanowire possesses an optimal mass activity of 2.13 A mgPt-1 and specific activity of 4.25 mA cm-2, giving the catalyst a great edge over PtFe jagged nanowire (1.63 A mgPt-1 and 3.75 mA cm-2) and Pt/C (0.38 A mgPt-1 and 0.76 mA cm-2). The in-situ Fourier transform infrared (FTIR) spectroscopy and differential electrochemical mass spectrometry (DEMS) unravel the origin of extraordinary CO tolerance in terms of key reaction intermediates in the non-CO pathway. Density functional theory (DFT) calculations add to the body of evidence that the surface Ir incorporation transforms the selectivity from CO pathway to non-CO pathway. Meanwhile, the presence of Ir serves to optimize surface electronic structure with weakened CO binding strength. We believe this work will advance the understanding of methanol oxidation catalytic mechanism and provide some insight into structural design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shiming Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Yang Y, Louisia S, Yu S, Jin J, Roh I, Chen C, Fonseca Guzman MV, Feijóo J, Chen PC, Wang H, Pollock CJ, Huang X, Shao YT, Wang C, Muller DA, Abruña HD, Yang P. Operando studies reveal active Cu nanograins for CO 2 electroreduction. Nature 2023; 614:262-269. [PMID: 36755171 DOI: 10.1038/s41586-022-05540-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 02/10/2023]
Abstract
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3-5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry, University of California, Berkeley, CA, USA.,Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sunmoon Yu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Maria V Fonseca Guzman
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Julian Feijóo
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peng-Cheng Chen
- Department of Chemistry, University of California, Berkeley, CA, USA.,Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | - Yu-Tsun Shao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, CA, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Department of Materials Science and Engineering, University of California, Berkeley, CA, USA. .,Kavli Energy NanoScience Institute, Berkeley, CA, USA.
| |
Collapse
|
12
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
13
|
Qiao M, Meng FY, Wu H, Wei Y, Zeng XF, Wang JX. PtCuRu Nanoflowers with Ru-Rich Edge for Efficient Fuel-Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204720. [PMID: 36269882 DOI: 10.1002/smll.202204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Wu X, Gannett CN, Liu J, Zeng R, Novaes LFT, Wang H, Abruña HD, Lin S. Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes. J Am Chem Soc 2022; 144:17783-17791. [PMID: 36137298 DOI: 10.1021/jacs.2c08278] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization reactions.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cara N Gannett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
16
|
Zerdoumi R, Matselko O, Rößner L, Sarkar B, Grin Y, Armbrüster M. Disentangling Electronic and Geometric Effects in Electrocatalysis through Substitution in Isostructural Intermetallic Compounds. J Am Chem Soc 2022; 144:8379-8388. [PMID: 35485643 DOI: 10.1021/jacs.2c03348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient development of catalytic materials requires knowledge of the decisive parameters defining the catalytic properties. In multicomponent metallic catalysts, these are categorized as electronic and geometric effects, yet they are strongly interrelated. A systematic disentanglement can be achieved by fixing one parameter while altering the other, which becomes possible through the substitution in isostructural intermetallic compounds. This approach enables the evaluation of electronic or geometric contributions both individually and combined. Herein, this is achieved by substitution of indium (three valence electrons) with tin (four valence electrons) in the series In1-xSnxPd2, which allows for a systematic variation of the total number of electrons per unit cell with only a minor variation of the unit cell parameters and thus the evaluation of the electronic effect. Geometric effects were evaluated by substitution of indium with gallium in the Ga1-xInxPd2 series, which allows for a systematic variation of the interatomic distances while maintaining the same number of valence electrons per unit cell and close atomic coordinates. By substituting gallium with tin in the Ga1-xSnxPd2 series, both effects are combined and addressed simultaneously. The activity enhancement of the methanol oxidation reaction on the Ga1-xSnxPd2 series is attributed to the synergy of the combined effects.
Collapse
Affiliation(s)
- Ridha Zerdoumi
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Oksana Matselko
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany.,Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine
| | - Leonard Rößner
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Bidushi Sarkar
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Yuri Grin
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
17
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
18
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Wang K, Huang D, Guan Y, Liu F, He J, Ding Y. Fine-Tuning the Electronic Structure of Dealloyed PtCu Nanowires for Efficient Methanol Oxidation Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kaili Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Danyang Huang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Yichi Guan
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Feng Liu
- Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China
| | - Jia He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
20
|
Pan Y, Blum AS, Mauzeroll J. Tunable Assembly of Protein Enables Fabrication of Platinum Nanostructures with Different Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52588-52597. [PMID: 34724375 DOI: 10.1021/acsami.1c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are promising biofunctional units for the construction of nanomaterials (NMs) due to their abundant binding sites, intriguing self-assembly properties, and mild NM synthetic conditions. Tobacco mosaic virus coat protein (TMVCP) is a protein capable of self-assembly into distinct morphologies depending on the solution pH and ionic strength. Herein, we report the use of TMVCP as a building block to organize nanosized platinum into discrete nanorings and isolated nanoparticles by varying the solution pH to modulate the protein assembly state. Compared with a commercial Pt/C catalyst, the TMVCP-templated platinum materials exhibited significant promotion of the catalytic activity and stability toward methanol electrooxidation in both neutral and alkaline conditions. The enhanced catalytic performance is likely facilitated by the protein support. Additionally, Pt nanorings outperformed isolated nanoparticles, although they are both synthesized on TMVCP templates. This could be due to the higher mechanical stability of the protein disk structure and possible cooperative effects between adjacent nanoparticles in the ring with narrow interparticle spacing.
Collapse
Affiliation(s)
- Yani Pan
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| |
Collapse
|
21
|
Zhang J, Zhao T, Yuan M, Li Z, Wang W, Bai Y, Liu Z, Li S, Zhang G. Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. J Colloid Interface Sci 2021; 602:504-512. [PMID: 34144304 DOI: 10.1016/j.jcis.2021.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Developing effective and robust novel electrocatalysts for direct alcohol fuel cells has been gaining much attention. However, the widely used Pt catalyst suffers from limitations including the sluggish kinetics, severe CO poisoning, and catalyst lost caused by aggregation and Ostwald ripening during alcohol oxidation reaction. Herein, dendritic intermetallic PtSnBi nanoalloys were synthesized via a facile hydrothermal approach with high electrocatalytic performance and enhanced CO resistance for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) owing to the synergism of the chosen three elements and unique three-dimensional morphology. Specifically, the PtSnBi nanoalloys display 4.6 and 6.7 times higher of mass activity (7.02 A mg-1Pt) and specific activity (16.65 mA cm-2) toward MOR than those of commercial Pt/C, respectively. The mass activity of PtSnBi nanoalloys still retains 75.7% of the initial value after 800 cycles of stability test, superior to Pt/C (38.0%). The dual-functional effect of Sn, optimized electronic structure by the ligand effect, and unique atomic arrangement are responsible for the enhanced MOR activity and stability of PtSnBi nanoalloys. Furthermore, the PtSnBi nanoalloys with highlighted anti-CO poisoning capacity also improve the electrocatalytic performance toward EOR, indicating their great promise as broad energy electrocatalysts.
Collapse
Affiliation(s)
- Jingxian Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Tongkun Zhao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Menglei Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenbo Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Synfuels China Technology Co. Ltd., Huairou District, Beijing 101407 China
| | - Zhanjun Liu
- Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China; State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Shuwei Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China.
| |
Collapse
|
22
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
23
|
Chen HS, Benedetti TM, Lian J, Cheong S, O’Mara PB, Sulaiman KO, Kelly CHW, Scott RWJ, Gooding JJ, Tilley RD. Role of the Secondary Metal in Ordered and Disordered Pt–M Intermetallic Nanoparticles: An Example of Pt3Sn Nanocubes for the Electrocatalytic Methanol Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hsiang-Sheng Chen
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Tania M. Benedetti
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Jiaxin Lian
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia
| | - Peter B. O’Mara
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Kazeem O. Sulaiman
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia
| | - Cameron H. W. Kelly
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Robert W. J. Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - J. Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney 2052, Australia
| | - Richard D. Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
24
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Xiong Y, Yang Y, DiSalvo FJ, Abruña HD. Synergistic Bimetallic Metallic Organic Framework-Derived Pt-Co Oxygen Reduction Electrocatalysts. ACS NANO 2020; 14:13069-13080. [PMID: 32935972 DOI: 10.1021/acsnano.0c04559] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational design of Pt-based electrocatalysts is of paramount importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Pt-Co alloys and nitrogen-doped carbons have been shown to be effective in enhancing the kinetics of the oxygen reduction reaction (ORR). Herein, we reported on two kinds of Pt-Co electrocatalysts, PtCo ordered intermetallic and PtCo2 disordered alloys, supported on bimetallic MOF-derived N-doped carbon. The synergistic interaction between Pt-Co nanoparticles and Co-N-C enhanced the overall ORR activity and maintained the integrity of both structures and their electrochemical properties during long-term stability testing. The optimal activity for both PtCo and PtCo2 occurred after 20 000 potential cycles. The enhanced performance of PtCo was ascribed to the formation of a two-atomic-layer Pt-rich shell and the lattice strain caused by the core-shell PtCo@Pt structure. The increased activity of PtCo2 was ascribed to the formation of large, spongy, and small solid nanoparticles during electrochemical dealloying and thus the exposure of more Pt sites on the surface. The strategy described herein advances our understanding of the structure-activity relationship in electrocatalysis and sheds light on the future development of more active and durable ORR electrocatalysts.
Collapse
Affiliation(s)
- Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
26
|
Shen T, Chen S, Zeng R, Gong M, Zhao T, Lu Y, Liu X, Xiao D, Yang Y, Hu J, Wang D, Xin HL, Abruña HD. Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, P. R. China
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|