1
|
Liang J, Wan Y, Lv H, Liu X, Lv F, Li S, Xu J, Deng Z, Liu J, Zhang S, Sun Y, Luo M, Lu G, Han J, Wang G, Huang Y, Guo S, Li Q. Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. NATURE MATERIALS 2024; 23:1259-1267. [PMID: 38769206 DOI: 10.1038/s41563-024-01901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.
Collapse
Affiliation(s)
- Jiashun Liang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
- Department of Physics and Astronomy, California State University, Northridge, Northridge, CA, USA
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Deng
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Liu
- Department of Physics and Astronomy, California State University, Northridge, Northridge, CA, USA
| | - Siyang Zhang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjun Sun
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University, Northridge, Northridge, CA, USA
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| | - Qing Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yang L, Bai J, Zhang N, Jiang Z, Wang Y, Xiao M, Liu C, Zhu S, Xu ZJ, Ge J, Xing W. Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202315119. [PMID: 38129317 DOI: 10.1002/anie.202315119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.
Collapse
Affiliation(s)
- Liting Yang
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Jingsen Bai
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Nanshu Zhang
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Jiang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Siyuan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Junjie Ge
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
3
|
Wei X, Song S, Cai W, Kang Y, Fang Q, Ling L, Zhao Y, Wu Z, Song X, Xu X, Osman SM, Song W, Asahi T, Yamauchi Y, Zhu C. Pt Nanoparticle-Mn Single-Atom Pairs for Enhanced Oxygen Reduction. ACS NANO 2024; 18:4308-4319. [PMID: 38261610 DOI: 10.1021/acsnano.3c09819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.
Collapse
Affiliation(s)
- Xiaoqian Wei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Weiwei Cai
- Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Yunqing Kang
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Qie Fang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ling Ling
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zexing Wu
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaokai Song
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
4
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
6
|
Yang L, Wang K, Jin L, Xu H, Chen H. Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction. Dalton Trans 2023; 52:11378-11389. [PMID: 37551456 DOI: 10.1039/d3dt01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Metallenes exhibit great potential for catalytic reaction, particularly for the hydrogen evolution reaction (HER) and biomass oxidation reaction, due to their favorable electronic configurations, ultrahigh specific surface areas, and highly accessible surface atoms. Therefore, metallenes can function as bifunctional electrocatalysts to boost the energy-saving biomass-oxidation-assisted HER, and have attracted great interest. Given the growing importance of green hydrogen as an alternative energy source in recent years, it is timely and imperative to summarize the recent progress and current status of metallene-based catalysts for the biomass-oxidation-assisted HER. Here, we review the recent advances in metallenes in terms of composition and structural regulations including alloying, nonmetal doping, defect engineering, surface functionalization, and heterostructure engineering strategies and their applications in driving electrocatalytic HER, with special focus on biomass-oxidation-assisted hydrogen production. The underlying structure-activity relationship and mechanisms are also comprehensively discussed. Finally, we also propose the challenges and future directions of metallene-based catalysts for the applications in biomass-oxidation-assisted HER.
Collapse
Affiliation(s)
- Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lie Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
7
|
Zeng S, Zhang J, Wang H, Zhang X, Hou H, Bai Y, Zhang G. Ternary PtZrNi nanorods for efficient multifunctional electrocatalysis towards oxygen reduction and alcohol oxidation. J Colloid Interface Sci 2023; 638:901-907. [PMID: 36737350 DOI: 10.1016/j.jcis.2023.01.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Pt-based alloys with precise structure and composition design have been considered to be effective and robust novel electrocatalysts for fuel cells. Whereas, the sluggish kinetics of oxygen reduction reaction (ORR) and low intrinsic activity of Pt limited their real application on a large scale. Herein, a novel ternary PtZrNi nanorods (PtZrNi NRs) was synthesized via a facile wet-chemical method to achieve high electrocatalytic performance for both ORR and alcohol oxidation reaction owing to the synergism of chosen three elements and prominent one-dimensional morphology. Specifically, the PtZrNi NRs show enhanced mass and specific activities of 0.755 A mgPt-1 and of 0.97 mA/cm2 at 0.9 VRHE towards ORR in acidic media, which are 4.7 and 4.4 times of those of commercial Pt/C, respectively. Additionally, in alkaline media, the PtZrNi NRs also exhibit superior ORR mass and specific activities of 3.216 A mgPt-1and 4.13 mA/cm2, enhanced by 34.6 and 31.3 times compared with those of commercial Pt/C, respectively. The PtZrNi NRs retain the nanorod shape well without agglomeration after an accelerated durability test (20000 cycles). This work may offer a new perspective for engineering high-performance Pt-based electrocatalysts for commercial fuel cells.
Collapse
Affiliation(s)
- Shi Zeng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jingxian Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Haifan Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xu Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Huaming Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing 101400, China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing 101400, China
| | - Guangjin Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
8
|
Nie M, Xu Z, Luo L, Wang Y, Gan W, Yuan Q. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J Colloid Interface Sci 2023; 643:26-37. [PMID: 37044011 DOI: 10.1016/j.jcis.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Bifunctional catalysts for ethanol oxidation reaction (EOR) and oxygen reduction reaction (ORR) with high noble-metal utilization are highly beneficial to direct ethanol fuel cells (DEFCs). This study developed a ternary bifunctional catalyst composed of ultrafine PtPdCu alloy nanoparticles and carbon nanotubes (CNTs) support through a facile surfactant-free solvothermal route. The carboxyl terminal groups on CNTs ensure the confined growth of PtPdCu alloys (∼5 nm) and suppress Ostwald ripening of metallic active sites during electrochemical cycling. Consequently, PtPdCu/CNTs exhibits high mass activity (1.95 A mg-1) and specific activity (4.08 mA cm-2) toward EOR, which are 7.8 and 8.9 times higher, respectively, than those of commercial Pt/C. Furthermore, PtPdCu/CNTs displays superior stability toward EOR compared with its bimetallic counterparts (PtPd/CNTs and PtCu/CNTs). In addition, PtPdCu/CNTs exhibits the highest half-wave potential of 0.888 V among all electrocatalysts, indicating high ORR activity. Density functional theory calculations reveal that Pd and Cu mediate the electronic structure of Pt, leading to enhanced catalytic activity of PtPdCu/CNTs. The excellent catalytic property of PtPdCu/CNTs can also be attributed to the bifunctional effects of Pd/Cu and the interaction between metal and the carbon support. The proposed material is a contribution to the family of efficient ternary-alloy electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Mingxing Nie
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zhengyu Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lei Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
9
|
Xu Y, Wei S, Zhang L, Wu Q, Wang F, Fan J, Wang D, Wu T, Cui X. Ion-Assisted Preparation of Bimetallic Porous Nanodendrites for Active and Stable Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207332. [PMID: 36719997 DOI: 10.1002/smll.202207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Delicate electrochemical active surface area (ECSA) engineering over the exposed catalytic interface and surface topology of platinum-based nanomaterial represents an effective pathway to boost its catalytic properties toward the clean energy conversion system. Here, for the first time, the facial and universal production of dendritic Pt-based nanoalloys (Pt-Ni, Co, Fe) with highly porous feature via a novel Zn2+ -mediated solution approach is demonstrated. In the presence of Zn2+ during synthesis, the competition of different galvanic replacement reactions and consequently generated "branch-to-branch" growth mode are believed to play key roles for the in situ fabrication of such unique nanostructure. Due to the fully exposed active sites and ligand effect-induced electronic optimization, electrochemical hydrogen evolution in alkaline media on these catalysts exhibit dramatic activity enhancement, delivering a current density of 30.6 mA cm-2 at a 70 mV overpotential for the Pt3 Ni nanodendrites and over 7.4 times higher than that of commercial Pt/C. This work highlights a general and powerful ion-assisted strategy for exploiting dendritic Pt-based nanostructures with efficient activities for water electrolysis.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuting Wei
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Qiong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Feng Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Direct Atomic-Level Insight into Oxygen Reduction Reaction on Size-Dependent Pt-based Electrocatalysts from Density Functional Theory Calculations. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
11
|
Li S, Jin H, Wang Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. NANOSCALE 2023; 15:2488-2515. [PMID: 36722933 DOI: 10.1039/d2nr06090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Benefiting from both one-dimensional (1D) morphology and alloy composition, metal alloy nanowires have been exploited as advanced electrocatalysts in various electrochemical processes. In this review, the synthesis approaches for metal alloy nanowires are classified into two categories: direct syntheses and syntheses based on preformed 1D nanostructures. Ligand systems that are of critical importance to the formation of alloy nanowires are summarized and reviewed, together with the strategies imposed to achieve the co-reduction of different metals. Meanwhile, different scenarios that form alloy nanowires from pre-synthesized 1D nanostructures are compared and contrasted. In addition, the characterization and electrocatalytic applications of metal alloy nanowires are briefly discussed.
Collapse
Affiliation(s)
- Shumin Li
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Hui Jin
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
12
|
Chen L, Zhao X, Dong F, Sun Y. Substitution of B-site in BaSb 2O 6 perovskite for surface lattice oxygen activation and boosted photocatalytic toluene mineralization. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129089. [PMID: 35596985 DOI: 10.1016/j.jhazmat.2022.129089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Perovskite oxides possess significant prospects in environment application because of their compositional versatility and controllable band structure for redox reactions. Nevertheless, low charge separation and limited reactants activation restrict their performance for practical applications. In this work, we reveal that the electronic structure of BaSb2O6 can be modulated effectively by substituting B-site cations, leading to broadened light response range and promoted carrier separation. The Ga atoms substitute the Sb atoms to form GaO bonds and enable octahedral distortion, resulting in the electron transfer from Ga atom to O atoms and realizing lattice oxygen activation. The unique electronic localization in the BaSb2O6 surface facilitates the adsorption and activation of O2, H2O, toluene and reaction intermediates, thus enhancing ROS generation for toluene mineralization. Compared with the performance of pure BaSb2O6, the photocatalytic toluene degradation and mineralization of 5 wt% Ga-BaSb2O6 are increased by 4.5 times and 4.8 times without obvious deactivation. The reported facile and valid strategy for in situ controlling of B-site in perovskite and their unique effects on the electronic structure would benefit the development of high-performance perovskites for environmental applications.
Collapse
Affiliation(s)
- Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xiaoli Zhao
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
13
|
Zhu R, Yu Y, Yu R, Lai J, Chung-Yen Jung J, Zhang S, Zhao Y, Zhang J, Xia Z. PtIrM (M = Ni, Co) jagged nanowires for efficient methanol oxidation electrocatalysis. J Colloid Interface Sci 2022; 625:493-501. [PMID: 35749844 DOI: 10.1016/j.jcis.2022.06.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
It remains a huge challenge to develop methanol oxidation electrocatalysts with remarkable catalytic activity and anti-CO poisoning capability. Herein, PtIrNi and PtIrCo jagged nanowires are successfully synthesized via a facile wet-chemical approach. Pt and Ir components are concentrated in the exterior and Ni is concentrated in the interior of PtIrNi jagged nanowires, while PtIrCo jagged nanowires feature the homogeneous distribution of constituent metals. The PtIrNi and PtIrCo jagged nanowires exhibit mass activities of 1.88 A/mgPt and 1.85 A/mgPt, respectively, 3.24 and 3.19 times higher than that of commercial Pt/C (0.58 A/mgPt). In-situ Fourier transform infrared spectroscopy indicates that CO2 was formed at a very low potential for both nanowires, in line with the high ratio of forward current density to backward current density for PtIrNi jagged nanowires (1.30) and PtIrCo jagged nanowires (1.46) relative to Pt/C (0.76). Also, the CO stripping and X-ray photoelectron spectroscopy results substantiate the remarkable CO tolerance of the jagged nanowires. Besides, the two jagged nanowires possess exceptional activities toward ethanol and ethylene glycol oxidation reactions. This work provides a novel line of thought in terms of rational design of alcohol oxidation electrocatalysts with distinctive nanostructures.
Collapse
Affiliation(s)
- Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shiming Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Zhang B, Shan J, Wang X, Hu Y, Li Y. Ru/Rh Cation Doping and Oxygen-Vacancy Engineering of FeOOH Nanoarrays@Ti 3 C 2 T x MXene Heterojunction for Highly Efficient and Stable Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200173. [PMID: 35567328 DOI: 10.1002/smll.202200173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Oxyhydroxides hold promise as highly-efficient non-noble electrocatalysts for the oxygen evolution reaction (OER), but their poor conductivity and structural instability greatly impede their progress. Herein, the authors develop a cation-doping and oxygenvacancy engineering strategy to fabricate Ru/Rh-doped FeOOH nanoarrays with abundant oxygen-vacancies in situ grown on Ti3 C2 Tx MXene (Ru/Rh-FeOOH@Ti3 C2 Tx ) as highly-efficient OER electrocatalysts. Benefiting from Ru/Rh-cation regulation, oxygenvacancy engineering, and heterojunction synergy between MXene and modulated FeOOH, the optimized Rh/Ru-FeOOH@Ti3 C2 Tx electrocatalysts exhibit excellent OER activities and remarkable stabilities with 100 h. Particularly, 3%Rh-FeOOH@Ti3 C2 Tx electrocatalyst only needs a 223 mV overpotential at 10 mA cm-2 and 306 mV to reach 100 mA cm-2 , which is superior to commercial IrO2 catalyst and most reported oxyhydroxide-based electrocatalysts. Further, systematically theoretical caculation, kinetics, thermodynamics, and microstructural analysis verify that the integration of Ru/Rh-cation doping and oxygen vacancy obviously enhances the intrinsic conductivity and lattice defects of FeOOH and expose more active sites, thereby decreasing the adsorption/desorption energy barrier and activation energy, and improving the specific activity and catalytic kinetics of electrocatalysts, whereas in situ hybridization with MXene strengthens the structural stability. This work clearly confirms that cationdoping and oxygen-vacancy engineering offers a joint strategy for the electronic structure modulation and design of highly-efficient inexpensive OER electrocatalysts.
Collapse
Affiliation(s)
- Bing Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China
| | - Jiongwei Shan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China
| | - Xinying Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China
| | - Yanjie Hu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center, No. 100 Waihuan Xi Road, Guangzhou, 510006, China
| |
Collapse
|
15
|
Zhang L, Li L, Shi Y, Wu F, Xu Y, Zhou T, Niu W, Zhang J, Xu G. Copper and iron mediated growth of surfactant‐free PtCu and PtFe advanced electrocatalysts for water oxidation and oxygen reduction. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ling Zhang
- School of Science Harbin Institute of Technology Shenzhen China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology Shenzhen China
| | - Lin Li
- School of Science Harbin Institute of Technology Shenzhen China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology Shenzhen China
| | - Yuhe Shi
- School of Science Harbin Institute of Technology Shenzhen China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology Shenzhen China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Yan Xu
- Department of Chemistry College of Sciences Northeastern University Shenyang China
| | - Tingting Zhou
- College of Chemical Engineering and Environmental Chemistry Weifang University Weifang China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Jiaheng Zhang
- School of Materials Science and Engineering Harbin Institute of Technology Shenzhen China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology Shenzhen China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| |
Collapse
|
16
|
Kabiraz MK, Ruqia B, Kim J, Kim H, Kim HJ, Hong Y, Kim MJ, Kim YK, Kim C, Lee WJ, Lee W, Hwang GH, Ri HC, Baik H, Oh HS, Lee YW, Gao L, Huang H, Paek SM, Jo YJ, Choi CH, Han SW, Choi SI. Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Bibi Ruqia
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hee Jin Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youngmin Hong
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Mi Ji Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Young Kyoung Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chan Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Won-Jae Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Wonkyun Lee
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Gyo Hyun Hwang
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Hyeong Cheol Ri
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Young Wook Lee
- Department of Chemistry Education, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Lei Gao
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Seung Min Paek
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youn-Jung Jo
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the Nano Century, KAIST, Daejeon 34141, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
17
|
Huang S, Lu S, Gong S, Zhang Q, Duan F, Zhu H, Gu H, Dong W, Du M. Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS NANO 2022; 16:522-532. [PMID: 34939416 DOI: 10.1021/acsnano.1c07574] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineering the morphology and electronic properties simultaneously of emerging metallene materials is an effective strategy for enhancing their performance as oxygen reduction reaction (ORR) electrocatalysts. Herein, a highly efficient and stable ORR electrocatalyst, Fe-doped ultrathin porous Pd metallene (Fe-Pd UPM) composed of a few layers of 2D atomic metallene layers, was synthesized using a simple one pot wet-chemical method and characterized. Fe-Pd UPM was measured to have enhanced ORR activity compared to undoped Pd metallene. Fe-Pd UPM exhibits a mass activity of 0.736 A mgPd-1 with a loss of mass activity of only 5.1% after 10 000 cycles at 0.9 V versus the reversible hydrogen electrode (vs RHE) in 0.1 M KOH solution. Density functional theory (DFT) calculations reveal that the stable Fe dopant in the inner atomic layers of Fe-Pd UPM delivers a much smaller overpotential during O* hydrogenation into OH*. The morphology, porous structure, and Fe doping were verified to have enhanced ORR activity. We believe that the rational design of metallene materials with porous structures and interlayer doping is promising for the development of efficient and stable electrocatalysts.
Collapse
Affiliation(s)
- Shaoda Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shun Gong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
18
|
Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214244] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Gao F, Zhang Y, Zou B, Jiang F, Li Z, Du Y. Facile synthesis of low-dimensional PdPt nanocrystals for high-performance electrooxidation of C 2 alcohols. J Colloid Interface Sci 2021; 610:271-279. [PMID: 34923267 DOI: 10.1016/j.jcis.2021.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023]
Abstract
Low-dimensional noble-metal materials (LDNMs) with different structural advantages have been considered as the high-performance catalysts for C2 alcohol electrooxidation. However, it is still a great challenging to precisely construct nanomaterials with low-dimensional composite structure thus to take advantages of various dimension, especial without the surfactant participation. Most studies focus on the modulation of the single dimensional nanocatalysts, the correlation between electrocatalytic performances and low-dimension composite have been rarely reported. Herein, we engineered a simple one-step approach to design multi-low-dimensional PdPt nanomaterials by using different Pd precursors. The low-dimensional PdPt nanocrystals (NCs) composed of zero dimension (0D) dendrite-like nanoparticles and two dimension (2D) nanosheets were obtained by using Pd(OAc)2, and meanwhile the 2D PdPt nanosheet assemblies (NAs) were synthesized by the introduction of NaPdCl4. Specifically, benefitting from the unique low-dimension structures with fast electron/mass transfer, and optimized electronic and synergistic effect, the multi-low-dimensional 0D-2D PdPt NCs showed the highest ethanol oxidation reaction (EOR)/ethylene glycol oxidation reaction (EGOR) mass activities, which were much higher than 2D PdPt NAs. The 0D-2D PdPt NCs also exhibited the highest structural stability. Generally, this work could inspire more advanced designs for surfactant-free synthesis and promote the fundamental engineering on nanocatalysts with low-dimension composite structure for electrocatalytic fields.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China
| | - Bin Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China
| | - Fengxing Jiang
- Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
21
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
22
|
Li M, Zhao Z, Zhang W, Luo M, Tao L, Sun Y, Xia Z, Chao Y, Yin K, Zhang Q, Gu L, Yang W, Yu Y, Lu G, Guo S. Sub-Monolayer YO x /MoO x on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103762. [PMID: 34423488 DOI: 10.1002/adma.202103762] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A crucial issue restricting the application of direct alcohol fuel cells (DAFCs) is the low activity of Pt-based electrocatalysts for alcohol oxidation reaction caused by the reaction intermediate (CO*) poisoning. Herein, a new strategy is demonstrated for making a class of sub-monolayer YOx /MoOx -surface co-decorated ultrathin platinum nanowires (YOx /MoOx -Pt NWs) to effectively eliminate the CO poisoning for enhancing methanol oxidation electrocatalysis. By adjusting the amounts of YOx and MoOx decorated on the surface of ultrathin Pt NWs, the optimized 22% YOx /MoOx -Pt NWs achieve a high specific activity of 3.35 mA cm-2 and a mass activity of 2.10 A mgPt -1 , as well as the enhanced stability. In situ Fourier transform infrared (FTIR) spectroscopy and CO stripping studies confirm the contribution of YOx and MoOx to anti-CO poisoning ability of the NWs. Density functional theory (DFT) calculations further reveal that the surface Y and Mo atoms with oxidation states allow COOH* to bind the surface through both the carbon and oxygen atoms, which can lower the free energy barriers for the oxidation of CO* into COOH*. The optimal NWs also show the superior activities toward the electro-oxidation of ethanol, ethylene glycol, and glycerol.
Collapse
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Sun
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhonghong Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Gao F, Zhang Y, You H, Li Z, Zou B, Du Y. Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101428. [PMID: 34213824 DOI: 10.1002/smll.202101428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Indexed: 06/13/2023]
Abstract
The core@shell structure dimension of the Pd-based nanocrystals deeply impacts their catalytic properties for C1 and C2 alcohol oxidation reactions. However, the precise simultaneous control on the synthesis of core@shell nanocrystals with different shell dimensions is difficult, and most synthesis on Pd-based core@shell nanocatalysts involves the surfactants participation by multiple steps, thus leads to limited catalytic properties. Herein, for the first time, a facile one-step surfactant-free strategy is developed for shell dimension reconstruction of PdAu@Pd core@shell nanocrystals by altering volume ratios of mixed solvents. The Pd-based sunflower-like (SL) and coral grass-like (CGL) nanocrystals are obtained with different 2D hexagonal nanosheet assembles and 3D network shells, respectively. Benefitting from the clean surface shell of 2D ultrathin nanosheets structure, high atom utilization efficiency, and robust electronic effect. The PdAu@Pd SL achieves the ascendant methanol/ethanol/ethylene glycol oxidation reaction (MOR/EOR/EGOR) activities, much higher than Pd/C catalysts, as well as the improved antipoisoning ability. Notably, this one-step construction shell dimension of PdAu@Pd core@shell catalysts not only provide a significant reference for the improvement of surfactant-free synthetic routes, but also shed light on the advanced engineering on shell dimensions in core@shell nanostructures for electrocatalysis and so forth.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yangping Zhang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Huaming You
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Zhuolin Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Bin Zou
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Tian L, Li Z, Song M, Li J. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials. NANOSCALE 2021; 13:12088-12101. [PMID: 34236371 DOI: 10.1039/d1nr02232f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) nanostructures have enabled noble-metal-based nanomaterials to be promising electrocatalysts toward overall water splitting due to their inherent structural advantages, including a high specific surface active area, numerous low-coordinated atoms, and a high density of defects and edges. Moreover, it is also disclosed that the electronic effect and strain effect within 2D nanostructures also benefit the further promotion of the electrocatalytic performance. In this review, we have focused on the recent progress in the fabrication of advanced electrocatalysts based on 2D noble-metal-based nanomaterials toward water splitting electrocatalysis. First, fundamental descriptions about water-splitting mechanisms, some promising engineering strategies, and major challenges in electrochemical water splitting are given. Then, the structural merits of 2D nanostructures for water splitting electrocatalysis are also highlighted, including abundant surface active sites, lattice distortion, abundant surface defects, electronic effects, and strain effects. Additionally, some representative water-splitting electrocatalysts have been discussed in detail to highlight the superiorities of 2D noble-metal-based nanomaterials for electrochemical water splitting. Finally, the underlying challenges and future opportunities for the fabrication of more advanced electrocatalysts for water splitting are also highlighted. We hope that this review article provides guidance for the fabrication of more efficient electrocatalysts for boosting industrial hydrogen production via water splitting.
Collapse
Affiliation(s)
- Lin Tian
- C School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | | | | | | |
Collapse
|
25
|
Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis. NANOSCALE 2021; 13:11314-11324. [PMID: 34184008 DOI: 10.1039/d1nr02019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In response to the shortage of fossil fuels, efficient electrochemical energy conversion devices are attracting increasing attention, while the limited electrochemical performance and high cost of noble metal-based electrode materials remain a daunting challenge. The electrocatalytic performance of electrode materials is closely bound with their intrinsic electronic/ionic states and crystal structures. Apart from the nanoscale design and conductive composite strategies, heteroatom doping, particularly for nonmetal doping (e.g., hydrogen, boron, sulfur, selenium, phosphorus, and tellurium), is also another effective strategy to greatly promote the intrinsic activity of the electrode materials by tuning their atomic structures. From the perspective of electrocatalytic reactions, the effective atomic structure regulation could induce additional active sites, create rich defects, and optimize the adsorption capability, thereby contributing to the promotion of the electrocatalytic performance of noble metal-based electrocatalysts. Encouraged by the great progress achieved in this field, we have reviewed recent advancements in nonmetal doping for electrocatalytic energy conversion. Specifically, the doping effect on the atomic structure and intrinsic electronic/ionic state is also systematically illustrated and the relationship with the electrocatalytic performance is also investigated. It is believed that this review will provide guidance for the development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Jingrui Teng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Yingmei Zhou
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
26
|
Zhang J, Zhao T, Yuan M, Li Z, Wang W, Bai Y, Liu Z, Li S, Zhang G. Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. J Colloid Interface Sci 2021; 602:504-512. [PMID: 34144304 DOI: 10.1016/j.jcis.2021.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Developing effective and robust novel electrocatalysts for direct alcohol fuel cells has been gaining much attention. However, the widely used Pt catalyst suffers from limitations including the sluggish kinetics, severe CO poisoning, and catalyst lost caused by aggregation and Ostwald ripening during alcohol oxidation reaction. Herein, dendritic intermetallic PtSnBi nanoalloys were synthesized via a facile hydrothermal approach with high electrocatalytic performance and enhanced CO resistance for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) owing to the synergism of the chosen three elements and unique three-dimensional morphology. Specifically, the PtSnBi nanoalloys display 4.6 and 6.7 times higher of mass activity (7.02 A mg-1Pt) and specific activity (16.65 mA cm-2) toward MOR than those of commercial Pt/C, respectively. The mass activity of PtSnBi nanoalloys still retains 75.7% of the initial value after 800 cycles of stability test, superior to Pt/C (38.0%). The dual-functional effect of Sn, optimized electronic structure by the ligand effect, and unique atomic arrangement are responsible for the enhanced MOR activity and stability of PtSnBi nanoalloys. Furthermore, the PtSnBi nanoalloys with highlighted anti-CO poisoning capacity also improve the electrocatalytic performance toward EOR, indicating their great promise as broad energy electrocatalysts.
Collapse
Affiliation(s)
- Jingxian Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Tongkun Zhao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Menglei Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenbo Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Synfuels China Technology Co. Ltd., Huairou District, Beijing 101407 China
| | - Zhanjun Liu
- Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China; State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Shuwei Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, PR China; Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, 100049, PR China.
| |
Collapse
|
27
|
Li M, Tian F, Lin T, Tao L, Guo X, Chao Y, Guo Z, Zhang Q, Gu L, Yang W, Yu Y, Guo S. High-Index Faceted PdPtCu Ultrathin Nanorings Enable Highly Active and Stable Oxygen Reduction Electrocatalysis. SMALL METHODS 2021; 5:e2100154. [PMID: 34927914 DOI: 10.1002/smtd.202100154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Ultrathin nanosheet catalysts deliver great potential in catalyzing the oxygen reduction reaction (ORR), but encounter the ceiling of the surface atomic utilizations, thus presenting a challenge associated with further boosting catalytic activity. Herein, a kind of PdPtCu ultrathin nanorings with increased numbers of electrocatalytically active sites is reported, with the purpose of breaking the activity ceiling of conventional catalysts. The as-made PdPtCu nanorings possess abundant high-index facets at the edge of both the exterior and interior surfaces. An ultrahigh electrochemical active surface area of 92.2 m2 g-1 PGM is achieved on this novel catalyst, much higher than that of the commercial Pt/C catalyst. The optimized Pd39 Pt33 Cu28 /C shows a great enhanced ORR activity with a specific activity of 2.39 mA cm-2 and a mass activity of 1.97 A mg-1 PGM at 0.9 V (versus RHE), as well as superior durability within 30 000 cycles. Density function theory calculations reveal that the high-index facets and alloying Cu atoms can optimize the oxygen adsorption energy, explaining the enhanced ORR activity. Overcoming a key technical barrier in sub-nanometer electrocatalysts, this work successfully introduces the hollow structures into the ultrathin nanosheets, heralding the exciting prospects of high-performance ORR catalysts in fuel cells.
Collapse
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Fenyang Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Tianshu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xin Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yuguang Chao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ziqi Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Hong W, Shen X, Wang F, Feng X, Li J, Wei Z. A bimodal-pore strategy for synthesis of Pt 3Co/C electrocatalyst toward oxygen reduction reaction. Chem Commun (Camb) 2021; 57:4327-4330. [PMID: 33913988 DOI: 10.1039/d1cc00711d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A bimodal-pore strategy was developed for preparation of the Pt3Co/C catalyst with active Pt3Co nanoparticles located around the mass transfer channels rather than inside them, which leads to ca. 29% higher mass transfer efficiency and a superior single-cell performance under an ultralow Pt loading.
Collapse
Affiliation(s)
- Wei Hong
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xinran Shen
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Fangzheng Wang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xin Feng
- School of Materials Science and Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China
| | - Jing Li
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
29
|
Peng K, Zhang W, Bhuvanendran N, Ma Q, Xu Q, Xing L, Khotseng L, Su H. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. J Colloid Interface Sci 2021; 598:126-135. [PMID: 33895534 DOI: 10.1016/j.jcis.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Pt-based alloy nanomaterials with nanodendrites (NDs) structures are efficient electrocatalysts for methanol oxidation reaction (MOR), however their durability is greatly limited by the issue of transition metals dissolution. In this work, a facile trace Ir-doping strategy was proposed to fabricate Ir-PtZn and Ir-PtCu alloy NDs catalysts in aqueous medium, which significantly improved the electrocatalytic activity and durability for MOR. The as-prepared Ir-PtZn/Cu NDs catalysts showed distinct dendrites structures with the averaged diameter of 4.1 nm, and trace Ir doping subsequently improved the utilization of Pt atoms and promoted the oxidation efficiency of methanol. The electrochemical characterizations further demonstrated that the obtained Ir-PtZn/Cu NDs possessed enhanced mass activities of nearly 1.23 and 1.28-fold higher than those of undoped PtZn and PtCu, and approximately 2.35 and 2.67-fold higher than that of Pt/C in acid medium. More excitingly, after long-term durability test, the proposed Ir-PtZn and Ir-PtCu NDs still retained about 88.9% and 91.6% of its initial mass activities, which further highlights the key role of Ir-doping in determining catalyst performance. This work suggests that trace Ir-doping engineering could be a promising way to develop advanced electrocatalysts toward MOR for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- Kai Peng
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Weiqi Zhang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | | | - Qiang Ma
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lei Xing
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
30
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
31
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
32
|
Kusunoki K, Kudo D, Hayashi K, Chida Y, Todoroki N, Wadayama T. Oxygen Reduction Reaction of Third Element-Modified Pt/Pd(111): Effect of Atomically Controlled Ir Locations on the Activity and Durability. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keisuke Kusunoki
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Daisuke Kudo
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Kenta Hayashi
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihiro Chida
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Naoto Todoroki
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Toshimasa Wadayama
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
33
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|