1
|
Li W, Bie Z, Zhang C, Xu X, Wang S, Yang Y, Zhang Z, Yang X, Lim KH, Wang Q, Wang WJ, Li BG, Liu P. Combinatorial Synthesis of Covalent Organic Framework Particles with Hierarchical Pores and Their Catalytic Application. J Am Chem Soc 2023; 145:19283-19292. [PMID: 37585603 DOI: 10.1021/jacs.3c04995] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.
Collapse
Affiliation(s)
- Wei Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengwei Bie
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chi Zhang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xintong Xu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Song Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuhao Yang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Ziyang Zhang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xuan Yang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Khak Ho Lim
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Qingyue Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Bo-Geng Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pingwei Liu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
2
|
Wu Y, Zhao S, Liu C, Hu L. Development of urease inhibitors by fragment-based dynamic combinatorial chemistry. ChemMedChem 2022; 17:e202200307. [PMID: 35975876 DOI: 10.1002/cmdc.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022]
Abstract
In this study, fragment-based dynamic combinatorial chemistry (DCC) was explored for the development of novel urease inhibitors. Based on a rationally designed fragment, two iteratively evolved dynamic combinatorial libraries (DCLs) were generated and screened in the presence of urease template. The best ligand identified revealed not only strong urease inhibition but also low cytotoxicity. Additionally, possible inhibitory mechanism was elucidated in the binding kinetic study and docking simulation.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Shuang Zhao
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Changming Liu
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Lei Hu
- Jiangsu University School of Pharmacy, College of pharmacy, 301 Xuefu Rd., Zhenjiang, China, 212013, Zhenjiang, CHINA
| |
Collapse
|
3
|
Lu J, Nie M, Li Y, Zhu H, Shi G. Design of composite nanosupports and applications thereof in enzyme immobilization: A review. Colloids Surf B Biointerfaces 2022; 217:112602. [PMID: 35660743 DOI: 10.1016/j.colsurfb.2022.112602] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
Abstract
Enzyme immobilization techniques have developed dramatically over the past several decades. Support materials are key in shaping the function of a specific immobilized enzyme. Although they have large specific surface areas and functional active sites, single-component nanomaterials and their surface chemical modification derivatives struggle to meet increasing demand. Thus, composite materials, compounds of two or more materials, have been developed and applied in efficient immobilization through advances in materials science. More methods have been developed and employed to design composite nanomaterials in recent years. These novel composite nanomaterials often show superior physical, chemical, and biological performance as supports in enzyme immobilization, among other applications. In this review, immobilization techniques and their supports are stated first and methods to design and fabricate composite nanomaterials as nanosupports are also shown in the following section. Applications of composite nanosupports in laccase immobilization are discussed as models in the later sections of the paper. This review is intended to help readers gain insight into the design principles of composite nanomaterials for immobilization supports.
Collapse
Affiliation(s)
- Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Huilin Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
4
|
Su DD, Aissou K, Zhang Y, Gervais V, Ulrich S, Barboiu M. Squalene–polyethyleneimine–dynamic constitutional frameworks enhancing the enzymatic activity of carbonic anhydrase. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02290c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbonic anhydrase is an essential enzyme that catalyzes the hydration/dehydration of carbon dioxide, which is highly relevant to carbon capture processes. It's encapsulation in dynameric capsules enhance its activity, durability and stability.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Karim Aissou
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P.R. China
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sebastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
| |
Collapse
|
5
|
Su D, Zhang Y, Ulrich S, Barboiu M. Constitutional Dynamic Inhibition/Activation of Carbonic Anhydrases. Chempluschem 2021; 86:1500-1510. [PMID: 34327867 DOI: 10.1002/cplu.202100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 12/23/2022]
Abstract
In this review we consider one important member of the metalloenzymes family, the carbonic anhydrase (CA), involved in the treatment of several common diseases. Different approaches have emerged to regulate the activity of CA, mostly acting on the inner catalytic active site or outer microenvironment of the enzyme, leading to inhibition or activation of CA. In recent years, gradually increased attention has focused on the adoption of constitutional dynamic chemistry (CDC) strategies for the screening and discovery of potent inhibitors or activators. The participation of reversible covalent bonds enabled the enzyme itself to select the optimal ligands obtained from diverse building blocks with comparatively higher degree of variety, resulting in the fittest recognition of enzyme ligands from complex dynamic systems. With the increasing implementation of CDC for enzyme targets, it shows great potential for drug discovery or CO2 capture applications.
Collapse
Affiliation(s)
- Dandan Su
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
6
|
Cui H, Wang Q, Zhang Y, Barboiu M, Zhang Y, Chen J. Double-Network Heparin Dynamic Hydrogels: Dynagels as Anti-bacterial 3D Cell Culture Scaffolds. Chemistry 2021; 27:7080-7084. [PMID: 33769604 DOI: 10.1002/chem.202005376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/26/2022]
Abstract
Double cross-linked dynamic hydrogels, dynagels, have been prepared through reversible imine bonds and supramolecular interactions, which showed good pH responsiveness, injectability, self-healing property and biocompatibility. With the further encapsulation of heparin, the obtained hydrogels exhibited good anti-bacterial activity and promotion effects for 3D cell culture.
Collapse
Affiliation(s)
- Han Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, 214122, Wuxi, P. R. China
| | - Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, 214122, Wuxi, P. R. China
| | - Ye Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, 214122, Wuxi, P. R. China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, 214122, Wuxi, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, 214122, Wuxi, P. R. China
| |
Collapse
|
7
|
Zhang Y, Pham CY, Yu R, Petit E, Li S, Barboiu M. Dynamic Hydrogels Based on Double Imine Connections and Application for Delivery of Fluorouracil. Front Chem 2020; 8:739. [PMID: 33005607 PMCID: PMC7479202 DOI: 10.3389/fchem.2020.00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dynamic hydrogels have been prepared by cross-linking of O-carboxymethyl chitosan (O-CMCS) with reversibly connected imino-PEGylated dynamers. The double imine chitosan/dynamer and dynamer bonds and were used to provide tighter structures and adaptive drug release behaviors of the hydrogels. The structural and physical properties of the resulted hydrogels were examined, showing good thermal stability and higher swelling behaviors (up to 3,000%). When hydrogels with various composition ratios were further applied for delivery of anti-cancer drug fluorouracil (5-FU), high drug encapsulation rates were recorded, up to 97%. The release profile of 5-FU showed fast rate at the beginning, followed by slow increase to the maximum amount within 12 h, demonstrating potential as drug carriers for efficient drug delivery.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Chi-Yen Pham
- Department of Pharmacological, Medical and Agronomical Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Rui Yu
- Institut Europeen des Membranes, UMR5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Eddy Petit
- Institut Europeen des Membranes, UMR5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Suming Li
- Institut Europeen des Membranes, UMR5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Mihail Barboiu
- Institut Europeen des Membranes, UMR5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|