1
|
Ren Y, Vettenranta E, Penttinen L, Blomster Andberg M, Koivula A, Rouvinen J, Hakulinen N. Unveiling the importance of the C-terminus in the sugar acid dehydratase of the IlvD/EDD superfamily. Appl Microbiol Biotechnol 2024; 108:436. [PMID: 39126499 DOI: 10.1007/s00253-024-13270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Microbial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid. We have shown earlier that the enzyme forms a dimer of dimers, in which the C-terminal histidine residue from one monomer participates in the formation of the active site of an adjacent monomer. The histidine appears to be conserved across the sequences of sugar acid dehydratases. To study the role of the C-terminus, five variants (H579A, H579F, H579L, H579Q, and H579W) were produced. All variants showed decreased activity for the tested sugar acid substrates, except the variant H579L on D-fuconate, which showed about 20% increase in activity. The reaction kinetic data showed that the substrate preference was slightly modified in H579L compared to the wild-type enzyme, demonstrating that the alternation of the substrate preference of sugar acid dehydratases is possible. In addition, a crystal structure of H579L was determined at 2.4 Å with a product analog 2-oxobutyrate. This is the first enzyme-ligand complex structure from an IlvD/EDD superfamily enzyme. The binding of 2-oxobutyrate suggests how the substrate would bind into the active site in the orientation, which could lead to the dehydration reaction. KEY POINTS: • Mutation of the last histidine at the C-terminus changed the catalytic activity of L-arabinonate dehydratase from R. leguminosarum bv. trifolii against various C5/C6 sugar acids. • The variant H579L of L-arabinonate dehydratase showed an alteration of substrate preferences compared with the wild type. • The first enzyme-ligand complex crystal structure of an IlvD/EDD superfamily enzyme was solved.
Collapse
Affiliation(s)
- Yaxin Ren
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Elias Vettenranta
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Leena Penttinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | | | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland.
| |
Collapse
|
2
|
Cao M, Sun W, Wang S, Di H, Du Q, Tan X, Meng W, Kang Z, Liu Y, Xu P, Lü C, Ma C, Gao C. Efficient L-valine production using systematically metabolic engineered Klebsiella oxytoca. BIORESOURCE TECHNOLOGY 2024; 395:130403. [PMID: 38295958 DOI: 10.1016/j.biortech.2024.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
L-Valine, a branched-chain amino acid with diversified applications, is biosynthesized with α-acetolactate as the key precursor. In this study, the metabolic flux in Klebsiella oxytoca PDL-K5, a Risk Group 1 organism producing 2,3-butanediol as the major fermentation product, was rearranged to L-valine production by introducing exogenous L-valine biosynthesis pathway and blocking endogenous 2,3-butanediol generation at the metabolic branch point α-acetolactate. After further enhancing L-valine efflux, strengthening pyruvate polymerization and selecting of key enzymes for L-valine synthesis, a plasmid-free K. oxytoca strain VKO-9 was obtained. Fed-batch fermentation with K. oxytoca VKO-9 in a 7.5 L fermenter generated 122 g/L L-valine with a yield of 0.587 g/g in 56 h. In addition, repeated fed-batch fermentation was conducted to prevent precipitation of L-valine due to oversaturation. The average concentration, yield, and productivity of produced L-valine in three cycles of repeated fed-batch fermentation were 81.3 g/L, 0.599 g/g, and 3.39 g/L/h, respectively.
Collapse
Affiliation(s)
- Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuo Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qihang Du
- Shandong Institute of Metrology, Jinan 250101, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Teshima M, Sutiono S, Döring M, Beer B, Boden M, Schenk G, Sieber V. Development of a Highly Selective NAD + -Dependent Glyceraldehyde Dehydrogenase and its Application in Minimal Cell-Free Enzyme Cascades. CHEMSUSCHEM 2024; 17:e202301132. [PMID: 37872118 DOI: 10.1002/cssc.202301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Anthropogenic climate change has been caused by over-exploitation of fossil fuels and CO2 emissions. To counteract this, the chemical industry has shifted its focus to sustainable chemical production and the valorization of renewable resources. However, the biggest challenges in biomanufacturing are technical efficiency and profitability. In our minimal cell-free enzyme cascade generating pyruvate as the central intermediate, the NAD+ -dependent, selective oxidation of D-glyceraldehyde was identified as a key reaction step to improve the overall cascade flux. Successive genome mining identified one candidate enzyme with 24-fold enhanced activity and another whose stability is unaffected in 10 % (v/v) ethanol, the final product of our model cascade. Semi-rational engineering improved the substrate selectivity of the enzyme up to 21-fold, thus minimizing side reactions in the one-pot enzyme cascade. The final biotransformation of D-glucose showed a continuous linear production of ethanol (via pyruvate) to a final titer of 4.9 % (v/v) with a molar product yield of 98.7 %. Due to the central role of pyruvate in diverse biotransformations, the optimized production module has great potential for broad biomanufacturing applications.
Collapse
Affiliation(s)
- Mariko Teshima
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
- Current address: CarboCode Germany GmbH, Byk-Gulden-Straße 2, 78467, Constance, Germany
| | - Manuel Döring
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
- Current address: CASCAT GmbH, Europaring 4, 94315, Straubing, Germany
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, St. Lucia, 4072, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, St. Lucia, 4072, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Rds, St. Lucia, 4072, Brisbane, Australia
- Sustainable Minerals Institute, The University of Queensland, Corner of College and Staff House Rds, St. Lucia, 4072, Brisbane, Australia
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Rd, St. Lucia, 4072, Brisbane, Australia
- SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| |
Collapse
|
4
|
Tang S, Chen Y, Liao D, Lin Y, Han S, Zheng S. A process for p-hydroxystyrene production from glycerol based on cell-free biosynthesis system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Willers VP, Beer B, Sieber V. Integrating Carbohydrate and C1 Utilization for Chemicals Production. CHEMSUSCHEM 2023; 16:e202202122. [PMID: 36520644 DOI: 10.1002/cssc.202202122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In the face of increasing mobility and energy demand, as well as the mitigation of climate change, the development of sustainable and environmentally friendly alternatives to fossil fuels will be one of the most important tasks facing humankind in the coming years. In order to initiate the transition from a petroleum-based economy to a new, greener future, biofuels and synthetic fuels have great potential as they can be adapted to already common processes. Thereby, especially synthetic fuels from CO2 and renewable energies are seen as the next big step for a sustainable and ecological life. In our study, we directly address the sustainable production of the most common biofuel, ethanol, and the highly interesting next-generation biofuel, isobutanol, from methanol and xylose, which are directly derivable from CO2 and lignocellulosic waste streams, respectively, such integrating synthetic fuel and biofuel production. After enzyme and reaction optimization, we succeeded in producing either 3 g L-1 ethanol or 2 g L-1 isobutanol from 7.5 g L-1 xylose and 1.6 g L-1 methanol. In our cell-free enzyme system, C1-compounds are efficiently combined and fixed by the key enzyme transketolase and converted to the intermediate pyruvate. This opens the way for a hybrid production of biofuels, platform chemicals and fine chemicals from CO2 and lignocellulosic waste streams as alternative to conventional routes depending solely either on CO2 or sugars.
Collapse
Affiliation(s)
- Vivian Pascal Willers
- Chair of Chemistry of Biogenic Resources, Technical University of Munich Campus Straubing, 94315, Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Technical University of Munich Campus Straubing, 94315, Straubing, Germany
- Current address: CASCAT GmbH, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich Campus Straubing, 94315, Straubing, Germany
- Technical University of Munich, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
| |
Collapse
|
6
|
Bayaraa T, Lonhienne T, Sutiono S, Melse O, Brück TB, Marcellin E, Bernhardt PV, Boden M, Harmer JR, Sieber V, Guddat LW, Schenk G. Structural and Functional Insight into the Mechanism of the Fe-S Cluster-Dependent Dehydratase from Paralcaligenes ureilyticus. Chemistry 2023; 29:e202203140. [PMID: 36385513 PMCID: PMC10107998 DOI: 10.1002/chem.202203140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Okke Melse
- Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, Brisbane, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, 4072, Brisbane, Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia.,Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315, Straubing, Germany
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072, Brisbane, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, Brisbane, Australia.,Sustainable Minerals Institute, The University of Queensland, 4072, Brisbane, Australia
| |
Collapse
|
7
|
Bayaraa T, Gaete J, Sutiono S, Kurz J, Lonhienne T, Harmer JR, Bernhardt PV, Sieber V, Guddat L, Schenk G. Dihydroxy‐Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry 2022; 28:e202200927. [PMID: 35535733 PMCID: PMC9543379 DOI: 10.1002/chem.202200927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic‐resistant superbugs. Enzymes of the branched‐chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti‐microbial drug development. Dihydroxy‐acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell‐free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000‐fold increase with kcat as high as ∼6.7 s−1). Inductively‐coupled plasma‐optical emission spectroscopy (ICP‐OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N‐isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti‐microbial chemotherapeutics.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jose Gaete
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Julia Kurz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Sustainable Minerals Institute The University of Queensland Brisbane 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
8
|
Wang J, Qu G, Xie L, Gao C, Jiang Y, Zhang YHPJ, Sun Z, You C. Engineering of a thermophilic dihydroxy-acid dehydratase toward glycerate dehydration for in vitro biosystems. Appl Microbiol Biotechnol 2022; 106:3625-3637. [PMID: 35546366 DOI: 10.1007/s00253-022-11936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Dihydroxy-acid dehydratase (DHAD) plays an important role in the utilization of glycerol or glucose for the production of value-added chemicals in the in vitro synthetic enzymatic biosystem. The low activity of DHAD in the dehydration of glycerate to pyruvate hampers its applications in biosystems. Protein engineering of a thermophilic DHAD from Sulfolobus solfataricus (SsDHAD) was performed to increase its dehydration activity. A triple mutant (I161M/Y145S/G205K) with a 10-fold higher activity on glycerate dehydration was obtained after three rounds of iterative saturation mutagenesis (ISM) based on computational analysis. The shrunken substrate-binding pocket and newly formed hydrogen bonds were the reason for the activity improvement of the mutant. For the in vitro synthetic enzymatic biosystems of converting glucose or glycerol to L-lactate, the biosystems with the mutant SsDHAD showed 3.32- and 2.34-fold higher reaction rates than the wild type, respectively. This study demonstrates the potential of protein engineering to improve the efficiency of in vitro synthetic enzymatic biosystems by enhancing the enzyme activity of rate-limited enzymes. KEY POINTS: • A screening method was established for the protein engineering of SsDHAD. • A R3 mutant of SsDHAD with 10-fold higher activity was obtained. • The R3 mutant exhibits higher productivity in the in vitro biosystems.
Collapse
Affiliation(s)
- Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Leipeng Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
9
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
10
|
Melse O, Sutiono S, Haslbeck M, Schenk G, Antes I, Sieber V. Structure-guided Modulation of the Catalytic Properties of [2Fe-2S]-dependent Dehydratases. Chembiochem 2022; 23:e202200088. [PMID: 35263023 PMCID: PMC9314677 DOI: 10.1002/cbic.202200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
The FeS cluster-dependent dihydroxyacid dehydratases (DHADs) and sugar acid-specific dehydratases (DHTs) from the ilvD/EDD superfamily are key enzymes in the bioproduction of a wide variety of chemicals. We analyzed [2Fe-2S]-dependent dehydratases in silico and in vitro, deduced functionally relevant sequence, structure and activity relationships within the ilvD/EDD superfamily, and propose a new classification based on their evolutionary relationships and substrate profiles. In silico simulations and analyses identified several key positions for specificity, which were experimentally investigated with site-directed and saturation mutagenesis. We thus increased the promiscuity of DHAD from Fontimonas thermophila (FtDHAD), showing >10-fold improved activity toward D-gluconate, and shifted the substrate preference of DHT from Paralcaligenes ureilyticus (PuDHT) toward shorter sugar acids (recording a six-fold improved activity toward the non-natural substrate D-glycerate). The successful elucidation of the role of important active site residues of the ilvD/EDD superfamily will further guide developments of this important biocatalyst for industrial applications.
Collapse
Affiliation(s)
- Okke Melse
- Technical University of Munich: Technische Universitat Munchen, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, GERMANY
| | - Samuel Sutiono
- Technical University of Munich: Technische Universitat Munchen, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, GERMANY
| | - Magdalena Haslbeck
- Technical University of Munich: Technische Universitat Munchen, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, GERMANY
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, 4072, St. Lucia, AUSTRALIA
| | - Iris Antes
- Technical University of Munich: Technische Universitat Munchen, TUM Center for Functional Protein Assemblies, Ernst-Otto-Fischer-Straße 8, 85748, Garching, GERMANY
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Center of Life and Food Sciences Weihenstephan, Schulgasse 16, 94315, Straubing, GERMANY
| |
Collapse
|
11
|
Meng W, Ma C, Xu P, Gao C. Biotechnological production of chiral acetoin. Trends Biotechnol 2022; 40:958-973. [DOI: 10.1016/j.tibtech.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
12
|
Enhanced In Vitro Cascade Catalysis of Glycerol into Pyruvate and Acetoin by Integration with Dihydroxy Acid Dehydratase from Paralcaligenes ureilyticus. Catalysts 2021. [DOI: 10.3390/catal11111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, an in vitro enzymatic cascade was constructed to transform glycerol into the high-value platform chemical pyruvate. However, the low activity of dihydroxy acid dehydratase from Sulfolobus solfataricus (SsDHAD) limited the efficiency. In this study, the enzymatic reduction of pyruvate catalyzed by d-lactate dehydrogenase from Pseudomonas aeruginosa PAO1 was used to assay the activities of dihydroxy acid dehydratases. Dihydroxy acid dehydratase from Paralcaligenes ureilyticus (PuDHT) was identified as the most efficient candidate for glycerate dehydration. After the optimization of the catalytic temperature for the enzymatic cascade, comprising alditol oxidase from Streptomyces coelicolor A3, PuDHT, and catalase from Aspergillus niger, 20.50 ± 0.27 mM of glycerol was consumed in 4 h to produce 18.95 ± 0.97 mM of pyruvate with a productivity 12.15-fold higher than the previous report using SsDHAD. The enzymatic cascade was further coupled with the pyruvate decarboxylase from Zymomonas mobile for the production of another platform compound, acetoin. Acetoin at a concentration of 8.52 ± 0.12 mM was produced from 21.62 ± 0.19 mM of glycerol with a productivity of 1.42 ± 0.02 mM h−1.
Collapse
|
13
|
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021; 10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro. In this review, the synthesis and application of pyruvate as a platform compound is used as an example to introduce cell-free biosynthesis systems. We systematically summarize a proposed methodology workflow of cell-free biosynthesis systems, including pathway design, enzyme mining, enzyme modification, multienzyme assembly, and pathway optimization. Some new methods, such as machine learning, are also mentioned in this review.
Collapse
Affiliation(s)
- Shiming Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xuewen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
14
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
15
|
Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate. Catalysts 2020. [DOI: 10.3390/catal11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Enzymatic reaction cascades represent a powerful tool to convert biogenic resources into valuable chemicals for fuel and commodity markets. Sugars and their breakdown products constitute a significant group of possible substrates for such biocatalytic conversion strategies to value-added products. However, one major drawback of sugar cascades is the need for cofactor recycling without using additional enzymes and/or creating unwanted by-products. Here, we describe a novel, multi-enzymatic reaction cascade for the one-pot simultaneous synthesis of L-alanine and L-serine, using the sugar degradation product 2-keto-3-deoxygluconate and ammonium as precursors. To pursue this aim, we used four different, thermostable enzymes, while the necessary cofactor NADH is recycled entirely self-sufficiently. Buffer and pH optimisation in combination with an enzyme titration study yielded an optimised production of 21.3 +/− 1.0 mM L-alanine and 8.9 +/− 0.4 mM L-serine in one pot after 21 h.
Collapse
|
16
|
Sutiono S, Siebers B, Sieber V. Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals. Appl Microbiol Biotechnol 2020; 104:7023-7035. [PMID: 32566996 PMCID: PMC7374468 DOI: 10.1007/s00253-020-10742-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
Abstract
2-keto-3-L-arabinonate dehydratase (L-KdpD) and 2-keto-3-D-xylonate dehydratase (D-KdpD) are the third enzymes in the Weimberg pathway catalyzing the dehydration of respective 2-keto-3-deoxy sugar acids (KDP) to α-ketoglutaric semialdehyde (KGSA). The Weimberg pathway has been explored recently with respect to the synthesis of chemicals from L-arabinose and D-xylose. However, only limited work has been done toward characterizing these two enzymes. In this work, several new L-KdpDs and D-KdpDs were cloned and heterologously expressed in Escherichia coli. Following kinetic characterizations and kinetic stability studies, the L-KdpD from Cupriavidus necator (CnL-KdpD) and D-KdpD from Pseudomonas putida (PpD-KdpD) appeared to be the most promising variants from each enzyme class. Magnesium had no effect on CnL-KdpD, whereas increased activity and stability were observed for PpD-KdpD in the presence of Mg2+. Furthermore, CnL-KdpD was not inhibited in the presence of L-arabinose and L-arabinonate, whereas PpD-KdpD was inhibited with D-xylonate (I50 of 75 mM), but not with D-xylose. Both enzymes were shown to be highly active in the one-step conversions of L-KDP and D-KDP. CnL-KdpD converted > 95% of 500 mM L-KDP to KGSA in the first 2 h while PpD-KdpD converted > 90% of 500 mM D-KDP after 4 h. Both enzymes in combination were able to convert 83% of a racemic mixture of D,L-KDP (500 mM) after 4 h, with both enzymes being specific toward the respective stereoisomer. Key points • L-KdpDs and D-KdpDs are specific toward L- and D-KDP, respectively. • Mg2+affected activity and stabilities of D-KdpDs, but not of L-KdpDs. • CnL-KdpD and PpD-KdpD converted 0.5 M of each KDP isomer reaching 95 and 90% yield. • Both enzymes in combination converted 0.5 M racemic D,L-KDP reaching 83% yield.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45117, Essen, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315, Straubing, Germany.
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, 4072, Australia.
| |
Collapse
|
17
|
Li T, Cui X, Cui Y, Sun J, Chen Y, Zhu T, Li C, Li R, Wu B. Exploration of Transaminase Diversity for the Oxidative Conversion of Natural Amino Acids into 2-Ketoacids and High-Value Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xuexian Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chuijian Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|