1
|
Shim H, Khani Y, Valizadeh B, Hoon Lee S, Hyun Ko C, Lee D, Park YK. Improved biohydrogen production using Ni/Zr xCe yO 2 loaded on foam reactor through steam gasification of sewage sludge. BIORESOURCE TECHNOLOGY 2024; 413:131530. [PMID: 39321932 DOI: 10.1016/j.biortech.2024.131530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The pervasive generation of sewage sludge (SES) and deficiencies in its disposal methods have resulted in several significant environmental and human health challenges. This study explored the catalytic effect of nickel (Ni)-based CeO2, ZrO2, Zr0.8Ce0.2O2, Zr0.4Ce0.6O2, and γ-Al2O3 supports in fixed beds and foam reactors in the steam gasification of SES. A comparison of the hydrogen selectivity and gas yield of the synthesized catalysts confirmed that the metal composite support, especially Zr0.8Ce0.2O2, had a positive effect on the catalytic activity and stability. This can be attributed to the enhanced oxygen vacancies and oxygen mobility, resistance to coke deposition, uniform morphology, improved dispersion, and increased number of Ni sites on the Zr0.8Ce0.2O2 support. Furthermore, foam reactors offer unique advantages in improving hydrogen production. This study provides an advanced strategy for SES valorization that fulfills the requirements of an economically and environmentally sustainable technology.
Collapse
Affiliation(s)
- Haneul Shim
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yasin Khani
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Behzad Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - See Hoon Lee
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea; Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
2
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39484694 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Huy BT, Nguyen XC, Bui VKH, Tri NN, Rabani I, Tran NHT, Ly QV, Truong HB. Photocatalytic degradation of antibiotic sulfamethizole by visible light activated perovskite LaZnO 3. J Environ Sci (China) 2024; 144:212-224. [PMID: 38802232 DOI: 10.1016/j.jes.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 05/29/2024]
Abstract
In this work, the perovskite LaZnO3 was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole (SMZ) antibiotics under visible light activation. SMZ was almost completely degraded (99.2% ± 0.3%) within 4 hr by photocatalyst LaZnO3 at the optimal dosage of 1.1 g/L, with a mineralization proportion of 58.7% ± 0.4%. The efficient performance of LaZnO3 can be attributed to its wide-range light absorption and the appropriate energy band edge levels, which facilitate the formation of active agents such as ·O2-, h+, and ·OH. The integration of RP-HPLC/Q-TOF-MS and DFT-based computational techniques revealed three degradation pathways of SMZ, which were initiated by the deamination reaction at the aniline ring, the breakdown of the sulfonamide moieties, and a process known as Smile-type rearrangement and SO2 intrusion. Corresponding toxicity of SMZ and the intermediates were analyzed by quantitative structure activity relationship (QSAR), indicating the effectiveness of LaZnO3-based photocatalysis in preventing secondary pollution of the intermediates to the ecosystem during the degradation process. The visible-light-activated photocatalyst LaZnO3 exhibited efficient performance in the occurrence of inorganic anions and maintained high durability across multiple recycling tests, making it a promising candidate for practical antibiotic treatment.
Collapse
Affiliation(s)
- Bui The Huy
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Korea
| | - X Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vu Khac Hoang Bui
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea
| | - Nguyen Ngoc Tri
- Lab of Computational Chemistry and Modelling, Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, Viet Nam
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Quang Viet Ly
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Monama GR, Ramoroka ME, Ramohlola KE, Seleka MW, Iwuoha EI, Modibane KD. Terbium- and samarium-doped Li 2ZrO 3 perovskite materials as efficient and stable electrocatalysts for alkaline hydrogen evolution reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54920-54937. [PMID: 39215922 DOI: 10.1007/s11356-024-34846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The preparation of highly active, rare earth, non-platinum-based catalysts for hydrogen evolution reactions (HER) in alkaline solutions would be useful in realizing green hydrogen production technology. Perovskite oxides are generally regarded as low-active HER catalysts, owing to their unsuitable hydrogen adsorption and water dissociation. In this article, we report on the synthesis of Li2ZrO3 perovskites substituted with samarium and terbium cations at A-sites for the HER. LSmZrO3 (LSmZO) and LTbZrO3 (LTbZO) perovskite oxides are more affordable materials, starting materials in abundance, environmentally friendly due to reduced usage of precious metal and moreover have potential for several sustainable synthesis methods compared to commercial Pt/C. The surface and elemental composition of the prepared materials have been confirmed by X-ray photoelectron spectroscopy (XPS). The morphology and composition analyses of the LSmZO and LTbZO catalysts showed spherical and regular particles, respectively. The electrochemical measurements were used to study the catalytic performance of the prepared catalyst for hydrogen evolution reactions in an alkaline solution. LTbZO generated 2.52 mmol/g/h hydrogen, whereas LSmZO produced 3.34 mmol/g/h hydrogen using chronoamperometry. This was supported by the fact that the HER electrocatalysts exhibited a Tafel slope of less than 120 mV/dec in a 1.0 M alkaline solution. A current density of 10 mA/cm2 is achieved at a potential of less than 505 mV. The hydrogen production rate of LTbZO was only 58.55%, whereas LSmZO had a higher Faradaic efficiency of 97.65%. The EIS results demonstrated that HER was highly beneficial to both electrocatalysts due to the relatively small charge transfer resistance and higher capacitance values.
Collapse
Affiliation(s)
- Gobeng R Monama
- SensorLab (University of the Western Cape Sensor Laboratories), 4Th Floor Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, 0727, Sovenga, South Africa
| | - Morongwa E Ramoroka
- SensorLab (University of the Western Cape Sensor Laboratories), 4Th Floor Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Kabelo E Ramohlola
- SensorLab (University of the Western Cape Sensor Laboratories), 4Th Floor Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, 0727, Sovenga, South Africa
| | - Marema W Seleka
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, 0727, Sovenga, South Africa
| | - Emmanuel I Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), 4Th Floor Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Kwena D Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, 0727, Sovenga, South Africa.
- DSI-NRF SARChI Chair in Photoelectrocatalytic Hydrogen Production, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, 0727, Sovenga, South Africa.
| |
Collapse
|
5
|
He J, Zhou Y, Wu S, Jin L, Cao J, Demir M, Ma P. Cr-Substituted SrCoO 3-δ Perovskite with Abundant Oxygen Vacancies for High-Energy and Durable Low-Temperature Antifreezing Flexible Supercapacitor. Inorg Chem 2024; 63:13755-13765. [PMID: 38982641 DOI: 10.1021/acs.inorgchem.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Developing high-performance electrodes for flexible antifreezing energy storage devices has been a significant challenge with the increasing demand for portable components. In this work, Cr-substituted SrCoO3-δ perovskites were first proposed as potential low-temperature supercapacitor electrode materials. The high-valence Cr6+ ([Ne]3s23p6) substitution favors a high-spin state of Co ions with enhanced electronic repulsion effect, ultimately forming a stable cubic structure with high conductivity. Accordingly, the modification strategies of SrCoO3 through the p6 configuration cation substitution have been improved. As a result, the asymmetric SrCo0.95Cr0.05O3-δ@CC//PPy@CC device exhibited a high energy density of 44.90 Wh kg-1 at 902.01 W kg-1 and maintained a 95.8% specific capacitance after 10,000 cycles, demonstrating an ultralong cyclic stability. The dramatically improved electrochemical performance was attributed to the stabilized crystal structure, increased oxygen vacancy, and accelerated oxygen diffusion rate. Furthermore, a quasi-solid-state supercapacitor with ethylene glycol (EG)-modified KOH/PVA organohydrogel electrolyte was developed through an advance in situ-integrated strategy. After bending at 180° for 1000 cycles, only a 9.7% capacity decay was observed. Even under -40 °C, the supercapacitor has a large energy density of 46.94 μWh cm-2. The present work represents the initial investigation into utilizing perovskite materials for antifreezing energy storage device, thereby confirming their potential application as low-temperature electronic components.
Collapse
Affiliation(s)
- Jiahao He
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shibo Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liming Jin
- School of Automotive Studies and Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
| | - Jinrui Cao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, Istanbul 34342, Türkiye
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Türkiye
| | - Pianpian Ma
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Hao J, Yang L, Zhang J. Oxygen Species Involved in Complete Oxidation of CH 4 by SrFeO 3-δ in Chemical Looping Reforming of Methane. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3212. [PMID: 38998295 PMCID: PMC11242567 DOI: 10.3390/ma17133212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Compared with conventional methane reforming technologies, chemical looping reforming (CLR) has the advantages of self-elimination of coke, a suitable syngas ratio for certain down-stream processes, and a pure H2 or CO stream. In the reduction step of CLR, methane combustion has to be inhibited, which could be achieved by designing appropriate oxygen carriers and/or optimizing the operating conditions. To gain a further understanding of the combustion reaction, methane oxidation by perovskite (SrFeO3-δ) at 900 °C and 1 atm in a pulse mode was investigated in this work. The oxygen non-stoichiometry of SrFeO3-δ prepared by a Pechini-type polymerizable complex method is 0.14 at ambient conditions, and it increases to 0.25 and subsequently to 0.5 when heating from 100 to 900 °C in argon that contains 2 ppmv of molecular oxygen. The activation energies of the first and second transitions are 294 and 177 kJ/mol, respectively. The presence of 0.99 vol.% hydrogen in argon significantly reduces the amount CO2 produced. At a pulse interval of 10 min, the amount of CO2 produced in the absence of hydrogen is one order of magnitude greater than that in the presence of hydrogen. In the former case, the amount of CO2 produced dramatically decreases first and then gradually approaches a constant, and the oxygen species involved in methane combustion can be partially replenished by extending the pulse interval, e.g., 82.5% of this type of oxygen species is replenished when the pulse interval is extended to 60 min. The restored species predominantly originate from those that reside in the surface layer or even in the bulk.
Collapse
Affiliation(s)
| | | | - Junshe Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.H.); (L.Y.)
| |
Collapse
|
7
|
He J, Wang T, Bi X, Tian Y, Huang C, Xu W, Hu Y, Wang Z, Jiang B, Gao Y, Zhu Y, Wang X. Subsurface A-site vacancy activates lattice oxygen in perovskite ferrites for methane anaerobic oxidation to syngas. Nat Commun 2024; 15:5422. [PMID: 38926349 PMCID: PMC11208437 DOI: 10.1038/s41467-024-49776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Tuning the oxygen activity in perovskite oxides (ABO3) is promising to surmount the trade-off between activity and selectivity in redox reactions. However, this remains challenging due to the limited understanding in its activation mechanism. Herein, we propose the discovery that generating subsurface A-site cation (Lasub.) vacancy beneath surface Fe-O layer greatly improved the oxygen activity in LaFeO3, rendering enhanced methane conversion that is 2.9-fold higher than stoichiometric LaFeO3 while maintaining high syngas selectivity of 98% in anaerobic oxidation. Experimental and theoretical studies reveal that absence of Lasub.-O interaction lowered the electron density over oxygen and improved the oxygen mobility, which reduced the barrier for C-H bond cleavage and promoted the oxidation of C-atom, substantially boosting methane-to-syngas conversion. This discovery highlights the importance of A-site cations in modulating electronic state of oxygen, which is fundamentally different from the traditional scheme that mainly credits the redox activity to B-site cations and can pave a new avenue for designing prospective redox catalysts.
Collapse
Affiliation(s)
- Jiahui He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center for the Ministry of Education for Advance Use Technology of Shanbei Energy, Xi'an, 710069, China
| | - Tengjiao Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
| | - Xueqian Bi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yubo Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Weibin Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Yue Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China.
| | - Yuming Gao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
| | - Yanyan Zhu
- School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center for the Ministry of Education for Advance Use Technology of Shanbei Energy, Xi'an, 710069, China.
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
8
|
Natesakhawat S, Popczun EJ, Baltrus JP, Wang K, Serna P, Liu S, Meyer R, Lekse JW. Investigation of AFeO 3 (A=Ba, Sr) Perovskites for the Oxidative Dehydrogenation of Light Alkanes under Chemical Looping Conditions. Chempluschem 2024; 89:e202300596. [PMID: 38300225 DOI: 10.1002/cplu.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Oxidative dehydrogenation (ODH) of light alkanes to produce C2-C3 olefins is a promising alternative to conventional steam cracking. Perovskite oxides are emerging as efficient catalysts for this process due to their unique properties such as high oxygen storage capacity (OSC), reversible redox behavior, and tunability. Here, we explore AFeO3 (A=Ba, Sr) bulk perovskites for the ODH of ethane and propane under chemical looping conditions (CL-ODH). The higher OSC and oxygen mobility of SrFeO3 perovskite contributed to its higher activity but lower olefin selectivity than its Ba counterpart. However, SrFeO3 perovskite is superior in terms of cyclic stability over multiple redox cycles. Transformations of the perovskite to reduced phases including brownmillerite A2Fe2O5 were identified by X-ray diffraction (XRD) as a cause of performance degradation, which was fully reversible upon air regeneration. A pre-desorption step was utilized to selectively tune the amount of lattice oxygen as a function of temperature and dwell time to enhance olefin selectivity while suppressing CO2 formation from the deep oxidation of propane. Overall, SrFeO3 exhibits promising potential for the CL-ODH of light alkanes, and optimization through surface and structural modifications may further engineer well-regulated lattice oxygen for maximizing olefin yield.
Collapse
Affiliation(s)
- Sittichai Natesakhawat
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Eric J Popczun
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - John P Baltrus
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Kun Wang
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
- Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Sophie Liu
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Randall Meyer
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Jonathan W Lekse
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Silva RS, Rodrigues JE, Gainza J, Serrano-Sánchez F, Martínez L, Huttel Y, Martínez JL, Alonso JA. Magnetoelastic Coupling Evidence by Anisotropic Crossed Thermal Expansion in Magnetocaloric RSrCoFeO 6 (R = Sm, Eu) Double Perovskites. Inorg Chem 2024; 63:7007-7018. [PMID: 38557070 PMCID: PMC11022179 DOI: 10.1021/acs.inorgchem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Double perovskite oxides, characterized by their tunable magnetic properties and robust interconnection between the lattice and magnetic degrees of freedom, present an enticing foundation for advanced magnetic refrigeration materials. Herein, we delve into the influence of rare-earth elements on RSrCoFeO6 (R = Sm, Eu) disordered double perovskites by examining their structural, electronic, magnetic, and magnetocaloric properties. Temperature-dependent synchrotron X-ray diffraction analysis confirmed the stability of the orthorhombic phase (Pnma) across a wide temperature range. X-ray photoemission spectroscopy revealed that both Sm and Eu are in the 3+ state, whereas multiple states for Co2+/3+ and Fe3+/4+ are identified. The magnetic investigation and magnetocaloric effect (MCE) analysis brought to light the presence of a long-range antiferromagnetic (AFM) order with a second-order phase transition (SOPT) in both samples. The maximum magnetic entropy change ΔSMmax was approximately 0.9 J/kg K for both samples at applied field 0-7 T, manifesting prominently above Neel temperatures TN ≈ 93 K (Sm) and 84 K (Eu). Nevertheless, different relative cooling powers (RCP) of 112.6 J/kg (Sm) and 95.5 J/kg (Eu) were observed. A detailed analysis of the temperature-dependent lattice parameters shed light on a distinct magnetocaloric effect across the magnetic transition temperature, unveiling an anisotropic thermal expansion [αV = 1.41 × 10-5 K-1 (Sm) and αV = 1.54 × 10-5 K-1 (Eu)] wherein the thermal expansion axial ratio αbSm/αbEu = 0.61 became lower with increasing temperature, which suggests that the Eu sample experiences a greater thermal expansion in the b-axis direction. At the atomic bonding level, the evidence for magnetoelastic coupling around the magnetic transition temperatures TN was found through the anomalies along the average Co/Fe-O bond distance, formal valence, octahedral distortion, as well as an anisotropic lattice expansion.
Collapse
Affiliation(s)
- Romualdo S. Silva
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| | - João E. Rodrigues
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
- CELLS-ALBA
Synchrotron Light Source, Cerdanyola del Vallès, E-08290 Barcelona, Spain
| | - Javier Gainza
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| | | | - Lidia Martínez
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| | - Yves Huttel
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| | - José Luis Martínez
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| | - José Antonio Alonso
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain
| |
Collapse
|
10
|
Yang Y, Sun Y, Lu G, Gao W, Yang T. From Lewis Acid to Lewis Base by La 3+-to-Y 3+ Substitution in α-YB 5O 9: Local Structure Modification Induced Lewis Basicity. J Phys Chem Lett 2024; 15:3554-3558. [PMID: 38526310 DOI: 10.1021/acs.jpclett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Different from the common perspective of average structure, we propose that the locally elongated metal-oxygen bonds induced by La3+-to-Y3+ substitution to a Lewis acid α-YB5O9 generate medium-strength basic sites. Experimentally, NH3- and CO2-TPD experiments prove that the La3+ doping of α-Y1-xLaxB5O9 (0 ≤ x ≤ 0.24) results in the emergence of new medium-strength basic sites and the increasing La3+ concentration modifies the number, not the strength, of the acidic and basic sites. The catalytic IPA conversion exhibits a reversal of the product selectivity, i.e., from 93% of propylene for α-YB5O9 to ∼90% of acetone for α-Y0.76La0.24B5O9, which means the La3+ doping gradually turns the solid from a Lewis acid to a Lewis base. Besides, α-Y0.76RE0.24B5O9 (RE = Ce, Eu, Gd, Tm) compounds were prepared to consolidate the above conjecture, where the acetone selectivity exhibits a linear dependence on the ionic radius (or electronegativity). This work suggests that the substitution-induced local structure change deserves more attention.
Collapse
Affiliation(s)
- Yao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yurong Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Guangxiang Lu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wenliang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
11
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
12
|
Baamran K, Lawson S, Rownaghi AA, Rezaei F. Reactive Capture and Conversion of CO 2 into Hydrogen over Bifunctional Structured Ce 1-xCo xNiO 3/Ca Perovskite-Type Oxide Monoliths. JACS AU 2024; 4:101-115. [PMID: 38274256 PMCID: PMC10807010 DOI: 10.1021/jacsau.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Carbon capture, utilization, and storage (CCUS) technologies are pivotal for transitioning to a net-zero economy by 2050. In particular, conversion of captured CO2 to marketable chemicals and fuels appears to be a sustainable approach to not only curb greenhouse emissions but also transform wastes like CO2 into useful products through storage of renewable energy in chemical bonds. Bifunctional materials (BFMs) composed of adsorbents and catalysts have shown promise in reactive capture and conversion of CO2 at high temperatures. In this study, we extend the application of 3D printing technology to formulate a novel set of BFMs composed of CaO and Ce1-xCoxNiO3 perovskite-type oxide catalysts for the dual-purpose use of capturing CO2 and reforming CH4 for H2 production. Three honeycomb monoliths composed of equal amounts of adsorbent and catalyst constituents with varied Ce1-xCox ratios were 3D printed to assess the role of cobalt on catalytic properties and overall performance. The samples were vigorously characterized using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2-TPR, in situ CO2 adsorption/desorption XRD, and NH3-TPD. Results showed that the Ce1-xCox ratios-x = 0.25, 0.50, and 0.75-did not affect crystallinity, texture, or metal dispersion. However, a higher cobalt content reduced reducibility, CO2 adsorption/desorption reversibility, and oxygen species availability. Assessing the structured BFM monoliths via combined CO2 capture and CH4 reforming in the temperature range 500-700 °C revealed that such differences in physiochemical properties lowered H2 and CO yields at higher cobalt loading, leading to best catalytic performance in Ce0.75Co0.25NiO3/Ca sample that achieved 77% CO2 conversion, 94% CH4 conversion, 61% H2 yield, and 2.30 H2/CO ratio at 700 °C. The stability of this BFM was assessed across five adsorption/reaction cycles, showing only marginal losses in the H2/CO yield. Thus, these findings successfully expand the use of 3D printing to unexplored perovskite-based BFMs and demonstrate an important proof-of-concept for their use in combined CO2 capture and utilization in H2 production processes.
Collapse
Affiliation(s)
- Khaled Baamran
- Linda
and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United
States
| | - Shane Lawson
- Linda
and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United
States
| | - Ali A. Rownaghi
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Fateme Rezaei
- Linda
and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United
States
- Department
of Chemical, Environmental and Materials Engineering, University of Miami, Miami, Florida 33124, United States
| |
Collapse
|
13
|
Li Y, Chen M, Jiang L, Tian D, Li K. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Phys Chem Chem Phys 2024; 26:1516-1540. [PMID: 38174573 DOI: 10.1039/d3cp04626e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The traditional partial oxidation, dry reforming and steam reforming of methane technologies are separated into two reactors for execution by chemical looping technology, which can avoid the defects exposed in the traditional process (avoiding carbon accumulation, reducing costs, etc.). The key to chemical looping technology is to find suitable oxygen carriers (OCs), which can store and release oxygen to form a closed loop in the chemical looping. The purpose of this review is to summarize the current status of perovskite oxides for partial oxidation and reforming of methane in chemical looping, describe the structure, oxygen capacity, oxygen migration rate and common synthesis methods of perovskites in chemical looping. In addition, the effects of impregnation loading, ion doping, and structural morphology on the catalytic conversion of CH4 by perovskite OCs and the reaction mechanism on the OCs are also discussed.
Collapse
Affiliation(s)
- Yuelun Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Mingyi Chen
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Lei Jiang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Dong Tian
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
14
|
Hussain A, Lou B, Bushira FA, Xia S, Liu F, Guan Y, Chen W, Xu G. Ultrafast Response and High Selectivity of Diethylamine Gas Sensors at Room Temperature Using MOF-Derived 1D CuO Nano-Ellipsoids. Anal Chem 2023; 95:17568-17576. [PMID: 37988575 DOI: 10.1021/acs.analchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Environmental and health monitoring requires low-cost, high-performance diethylamine (DEA) sensors. Materials based on metal-organic frameworks (MOFs) can detect hazardous gases due to their large specific surface area, many metal sites, unsaturated sites, functional connectivity, and easy calcination to remove the scaffold. However, developing facile materials with high sensitivity and selectivity in harsh environments for accurate DEA detection at a low detection limit (LOD) at room temperature (RT) is challenging. In this study, p-type semiconducting porous CuOx sensing materials were synthesized using a simple solvothermal process and annealed in an argon atmosphere at three different temperatures (x = 400, 600, and 800 °C). Significant variations in particle size, specific area, crystallite size, and shape were noticed when the annealing temperature was elevated. Cu-MIL-53 annealed at 400 °C (CuO-400) has a typical nanoellipsoid (NEs) shape with a length of 61.5 nm and a diameter of 33.2 nm. Surprisingly, CuO-400 NEs showed an excellent response to DEA with an ultra-LOD (Rg/Ra = 7.3 @ 100 ppb, 55% relative humidity), excellent selectivity and sensitivity (Rg/Ra = 236 @ 15 ppm), exceptional long-term stability and repeatability, and a fast response/recovery period at RT, outperforming most previously reported materials. CuO-400 NEs have outstanding gas-sensing characteristics due to their high porosity, 1D nanostructure, unsaturated Cu sites (Cu+ and Cu2+), large specific surface area, and numerous oxygen vacancies. This study presents a generic approach to produce future CuO derived from Cu-MOFs-sensitive materials, revealing new insights into the design of effective sensors for environmental monitoring at RT.
Collapse
Affiliation(s)
- Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fangshuo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
15
|
Kim SC, Kim BS. Catalytic removal of harmful volatile organic compounds by reutilizing zinc rods waste from spent batteries as a palladium catalyst support. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122678. [PMID: 37804904 DOI: 10.1016/j.envpol.2023.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The emission of volatile organic compounds (VOCs) has led to significant deterioration in air quality, making it imperative to ensure that these compounds are removed from emission sources before they are released into the atmosphere. In this context, the present study recycled spent primary batteries to use their zinc rods waste (ZRW) as a palladium catalyst support for the removal of harmful VOCs. To this end, palladium supported on ZRW (Pd/ZRW) catalysts were prepared and tested for the catalytic oxidation of benzene, methylbenzene and 1,2-dimethylbenzene. The physicochemical properties of the Pd/ZRW catalysts were carefully characterized by ICP-OES, BET, SEM, XRD, FE-TEM, XPS, and H2-TPR analyses. The main component of ZRW was identified as ZnO. Consistent with expectations, increases in the loading of Pd from 0.1 to 1.0 wt% in the Pd/ZRW catalysts resulted in enhanced VOCs removal efficiency. The reaction temperature required for the complete oxidation (100% removal efficiency) of methylbenzene and 1,2-dimethylbenzene on the 1.0 wt% Pd/ZRW catalyst was below 340 °C at a gas hourly space velocity of 50,000 h-1. TEM, XPS, and H2-TPR results implied that the enhancement of catalytic activity with the addition of Pd could be attributed to the readily movable surface lattice oxygen as well as the active component (Pd species). Ultimately, ZRW of spent primary batteries appear to show promise as a catalyst support for VOCs removal. This study has introduced a novel strategy for reducing air pollutants by utilizing waste, which promotes the disposal of hazardous solid waste and ensures clean air quality.
Collapse
Affiliation(s)
- Sang Chai Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Beom-Sik Kim
- Hydrogen and Low-Carbon Energy R&D Lab., POSCO N.EX.T. Hub, POSCO Holdings, Pohang, 37673, Republic of Korea.
| |
Collapse
|
16
|
Zuhra Z, Li S, Xie G, Wang X. Soot Erased: Catalysts and Their Mechanistic Chemistry. Molecules 2023; 28:6884. [PMID: 37836727 PMCID: PMC10574243 DOI: 10.3390/molecules28196884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soot formation is an inevitable consequence of the combustion of carbonaceous fuels in environments rich in reducing agents. Efficient management of pollution in various contexts, such as industrial fires, vehicle engines, and similar applications, relies heavily on the subsequent oxidation of soot particles. Among the oxidizing agents employed for this purpose, oxygen, carbon dioxide, water vapor, and nitrogen dioxide have all demonstrated effectiveness. The scientific framework of this research can be elucidated through the following key aspects: (i) This review situates itself within the broader context of pollution management, emphasizing the importance of effective soot oxidation in reducing emissions and mitigating environmental impacts. (ii) The central research question of this study pertains to the identification and evaluation of catalysts for soot oxidation, with a specific emphasis on ceria-based catalysts. The formulation of this research question arises from the need to enhance our understanding of catalytic mechanisms and their application in environmental remediation. This question serves as the guiding principle that directs the research methodology. (iii) This review seeks to investigate the catalytic mechanisms involved in soot oxidation. (iv) This review highlights the efficacy of ceria-based catalysts as well as other types of catalysts in soot oxidation and elucidate the underlying mechanistic strategies. The significance of these findings is discussed in the context of pollution management and environmental sustainability. This study contributes to the advancement of knowledge in the field of catalysis and provides valuable insights for the development of effective strategies to combat air pollution, ultimately promoting a cleaner and healthier environment.
Collapse
Affiliation(s)
- Zareen Zuhra
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Li
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| | - Guanqun Xie
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| | - Xiaoxia Wang
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| |
Collapse
|
17
|
Zhang X, Liu R, Liu T, Pei C, Gong J. Redox catalysts for chemical looping methane conversion. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Yoshiyama Y, Hosokawa S, Haneda M, Morishita M, Asakura H, Teramura K, Tanaka T. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO 3 Perovskite Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5293-5300. [PMID: 36660899 DOI: 10.1021/acsami.2c20165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An environmental catalyst in which a transition metal (Mn, Fe, or Co) was substituted into the Ti site of the host material, SrTiO3, was synthesized, and the reactivity of lattice oxygen was evaluated. For CO oxidation, Mn- and Co-doped SrTiO3 catalysts, which provided high thermal stabilities, exhibited higher activities than Pt/Al2O3 catalysts despite their low surface areas. Temperature-programmed reduction experiments using X-ray absorption fine structure (XAFS) measurements showed that the lattice oxygen of Co-doped catalyst was released at the lowest temperature. Isotopic experiments with CO and 18O2 revealed that the lattice oxygen was involved in CO oxidation on Fe- and Co-doped catalysts; that is, CO oxidation on these catalysts proceeded via the Mars-van Krevelen mechanism. On the other hand, for Mn-doped catalyst, the contribution of lattice oxygen to CO oxidation was relatively negligible, indicating that the reaction proceeded according to the Langmuir-Hinshelwood mechanism. This paper clearly demonstrates that the catalytic mechanism can be adjusted by substituting transition metals into SrTiO3.
Collapse
Affiliation(s)
- Yuji Yoshiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Saburo Hosokawa
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Masaaki Haneda
- Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu507-0071, Japan
| | - Masashige Morishita
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroyuki Asakura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Kentaro Teramura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| |
Collapse
|
19
|
Ibrahim IAM, Chung CY. Ab initio study of changing the oxygen reduction activity of Co-Fe-based perovskites by tuning the B-site composition. Phys Chem Chem Phys 2023; 25:4236-4242. [PMID: 36661277 DOI: 10.1039/d2cp05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Perovskite oxides are promising low-cost and stable alternative electrocatalysts for the oxygen reduction reaction (ORR), relative to the precious metal-based electrocatalysts. Despite the experimental research on substituting various transition metals into the B-site of perovskite catalysts to improve the ORR performance, the detailed ORR mechanism due to the substitution process is rarely studied. In this paper, the ORR activity of La0.5Sr0.5CoxFe1-xO3 perovskites (x = 0, 0.25, 0.5, 0.75, and 1) is studied by density functional theory (DFT). The ORR mechanism in alkaline solution is theoretically examined as a function of the Co/Fe composition at different potentials. The substitution of Co for Fe at the B-site of the perovskites dramatically changes the theoretical overpotential and enhances the activity. The HOO* formation is the potential-determining step for all the Co/Fe compositions. In comparison with the other compositions, the Co0.5/Fe0.5 composition exhibits the lowest overpotential and bonding with the reaction intermediates moderately. Furthermore, the oxygen binding energy is correlated with the bulk oxygen p-band center relative to the Fermi level. Among all the Co/Fe compositions, the Co0.5/Fe0.5 composition shows neither too low nor too high oxygen p-band center value. These results provide deep insights into the ORR mechanism on B-site substituted perovskites and guidelines for the design of cost-effective and Pt-free electrocatalysts for oxygen reduction.
Collapse
Affiliation(s)
- Ismail A M Ibrahim
- Division of Carbon Neutrality & Materials Digitalization, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, South Korea. .,Department of Chemistry, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | - Chan-Yeup Chung
- Division of Carbon Neutrality & Materials Digitalization, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, South Korea.
| |
Collapse
|
20
|
Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Josef Heveling
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
21
|
El-Naka MA, El-Dissouky A, Ali GY, Ebrahim S, Shokry A. Garlic capped silver nanoparticles for rapid detection of cholesterol. Talanta 2023; 253:123908. [PMID: 36087411 DOI: 10.1016/j.talanta.2022.123908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
A fluorescent biosensor based on garlic (Allium sativum L.) capped Ag nanoparticles (G-Ag NPs) has been synthesized for cholesterol detection. Pristine Ag NPs and G-Ag NPs were synthesized through the chemical reduction process. The effect of different capping agents such as 3-aminopropyltriethoxysilane (APTS), glutathione, 8-hydroxyquinoline, garlic/APTS, garlic/glutathione, and garlic/8-hydroxyquinoline on Ag NPs was evaluated. These NPs were characterized using Fourier transform infrared (FTIR), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), X-Ray diffraction (XRD), UV-visible spectra, and Zeta potential. The HRTEM micrographs illustrated that Ag NPs with particles size ranging from 2.98 to 14.34 nm were aggregated. G-Ag NPs images showed uniformly distributed spherical particles with particles size from 4.52 to 12.8 nm. The reduction in the plasmonic bands of Ag NPs and G-Ag NPs occurred by 96.4% and 11.7%, respectively after 12 months. The developed sensor for cholesterol based on the fluorescence enhancement had a linear response in a concentration range of 0.4-5.17 mM with a sensitivity of 4.36 Mm-1 and a limit of detection of 0.186 mM. The high selectivity toward cholesterol in presence of different interferes such as glucose, cysteine, glycine, urea, sucrose, nickel, and copper, and their mixture was evaluated. The applicability of this developed sensor for real serum samples was detected with a recovery percentage from 99.1 to 101.3%. Repeatability and reproducibility experiments displayed relative standard deviations (RSD) of 0.88% and 0.62%, respectively.
Collapse
Affiliation(s)
- Marwa Ahmed El-Naka
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt.
| | - A El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt
| | - G Y Ali
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt
| | - Shaker Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Azza Shokry
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
22
|
Zhao Q, Hou X, Wang J, Cheng DG, Chen F, Zhan X. Engineering Specific Mo–O Bond Stretching to Activate Lattice Oxygen in V-Doped Bi 2MoO 6 for Enhanced Oxidative Dehydrogenation of 1-Butene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qinyang Zhao
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Xinglin Hou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Jinling Wang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Dang-guo Cheng
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| |
Collapse
|
23
|
Egorysheva AV, Ellert OG, Liberman EY, Golodukhina SV, Arapova OV, Chistyakova PA, Naumkin AV. Catalytic Oxidation of Methane over PdO/LnFe0.5Sb1.5O6 (Ln = La, Ce, Pr, Nd, Sm) Catalysts. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Ghanem MA, Amer MS, Arunachalam P, Al-Mayouf AM, Weller MT. Role of rhodium doping into lanthanum cobalt oxide (LaCoO3) perovskite and the induced bifunctional activity of oxygen evolution and reduction reactions in alkaline medium. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Tang Z, Zhang T, Luo D, Wang Y, Hu Z, Yang RT. Catalytic Combustion of Methane: From Mechanism and Materials Properties to Catalytic Performance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyu Tang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’anShaanxi710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan48109-2136, United States
| |
Collapse
|
26
|
Polo-Garzon F, Fung V, Zhang J, Bao Z, Meyer HM, Kidder M, Wu Z. CH 4 Activation over Perovskite Catalysts: True Density and Reactivity of Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Junyan Zhang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry M. Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michelle Kidder
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
27
|
Xia X, Chang W, Cheng S, Huang C, Hu Y, Xu W, Zhang L, Jiang B, Sun Z, Zhu Y, Wang X. Oxygen Activity Tuning via FeO 6 Octahedral Tilting in Perovskite Ferrites for Chemical Looping Dry Reforming of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xue Xia
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Wenxi Chang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Shuwen Cheng
- School of Metallurgy, Northeastern University, Shenyang 100819, China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yue Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, Canberra, Acton 2601, Australia
| | - Yanyan Zhu
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Recent progress in the development of synthetic oxygen carriers for chemical looping combustion applications. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Siang T, Jalil A, Liew S, Owgi A, Rahman A. A review on state-of-the-art catalysts for methane partial oxidation to syngas production. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- T.J. Siang
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.A. Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Johor, Malaysia
| | - S.Y. Liew
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.H.K. Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A.F.A. Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
30
|
Yu J, Wang C, Yuan Q, Yu X, Wang D, Chen Y. Ag-Modified Porous Perovskite-Type LaFeO3 for Efficient Ethanol Detection. NANOMATERIALS 2022; 12:nano12101768. [PMID: 35630990 PMCID: PMC9143232 DOI: 10.3390/nano12101768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
Perovskite (ABO3) nanosheets with a high carrier mobility have been regarded as the best candidates for gas-sensitive materials arising from their exceptional crystal structure and physical–chemical properties that often exhibit good gas reactivity and stability. Herein, Ag in situ modified porous LaFeO3 nanosheets were synthesized by the simple and efficient graphene oxide (GO)-assisted co-precipitation method which was used for sensitive and selective ethanol detection. The Ag modification ratio was studied, and the best performance was obtained with 5% Ag modification. The Ag/LaFeO3 nanomaterials with high surface areas achieved a sensing response value (Rg/Ra) of 20.9 to 20 ppm ethanol at 180 °C with relatively fast response/recovery times (26/27 s). In addition, they showed significantly high selectivity for ethanol but only a slight response to other interfering gases. The enhanced gas-sensing performance was attributed to the combination of well-designed porous nanomaterials with noble metal sensitization. The new approach is provided for this strategy for the potential application of more P-type ABO3 perovskite-based gas-sensitive devices.
Collapse
Affiliation(s)
- Jiejie Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Cong Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Quan Yuan
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Xin Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
- Correspondence: (D.W.); (Y.C.)
| | - Yang Chen
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
- Correspondence: (D.W.); (Y.C.)
| |
Collapse
|
31
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
32
|
Matsumoto T, Ishikawa S, Saito M, Ueda W, Motohashi T. Studies on activation factors for oxidative coupling of methane over lithium-based silicate/germanate catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01641e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation factors for improving oxidative coupling of methane (OCM) catalytic performance have been identified. Potential OCM catalysts, Li4SiO4 and Li4GeO4, have been discovered.
Collapse
Affiliation(s)
- Tomohiro Matsumoto
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Satoshi Ishikawa
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Miwa Saito
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Wataru Ueda
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Teruki Motohashi
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| |
Collapse
|
33
|
Yan WQ, Zhu YA, Zhou XG, Yuan WK. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Sun J, Yamaguchi D, Tang L, Periasamy S, Ma H, Hart JN, Chiang K. Enhancement of oxygen exchanging capability by loading a small amount of ruthenium over ceria-zirconia on dry reforming of methane. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.103407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Liu M, Cao Z, Liang W, Zhang Y, Jiang H. Membrane Catalysis: N
2
O Decomposition over La
0.2
Sr
0.8
Ti
0.2
Fe
0.8
O
3–δ
Membrane with Oxygen Permeability. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengke Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology No.189 Songling Road 266101 Qingdao China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing China
| | - Zhengwen Cao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology No.189 Songling Road 266101 Qingdao China
| | - Wenyuan Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology No.189 Songling Road 266101 Qingdao China
| | - Yan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology No.189 Songling Road 266101 Qingdao China
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology No.189 Songling Road 266101 Qingdao China
| |
Collapse
|
36
|
Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen Evolution in an Alkaline Solution. Catalysts 2021. [DOI: 10.3390/catal11111408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perovskites of strontium cobalt oxyhalides having the chemical formulae Sr2CoO4-xHx (H = F, Cl, and Br; x = 0 and 1) were prepared using a solid-phase synthesis approach and comparatively evaluated as electrocatalysts for oxygen evolution in an alkaline solution. The perovskite electrocatalyst crystal phase, surface morphology, and composition were examined by X-ray diffraction, a scanning electron microscope, and energy-dispersive X-ray (EDX) mapping. The electrochemical investigations of the oxyhalides catalysts showed that the doping of F, Cl, or Br into the Sr2CoO4 parent oxide enhances the electrocatalytic activity for the oxygen evolution reaction (OER) with the onset potential as well as the potential required to achieve a current density of 10 mA/cm2 shifting to lower potential values in the order of Sr2CoO4 (1.64, 1.73) > Sr2CoO3Br (1.61, 1.65) > Sr2CoO3Cl (1.53, 1.60) > Sr2CoO3F (1.50, 1.56) V vs. HRE which indicates that Sr2CoO3F is the most active electrode among the studied catalysts under static and steady-state conditions. Moreover, Sr2CoO3F demonstrates long-term stability and remarkably less charge transfer resistance (Rct = 36.8 ohm) than the other oxyhalide counterparts during the OER. The doping of the perovskites with halide ions particularly the fluoride-ion enhances the surface oxygen vacancy density due to electron withdrawal away from the Co-atom which improves the ionic and electronic conductivity as well as the electrochemical activity of the oxygen evolution in alkaline solution.
Collapse
|
37
|
Intensified solar thermochemical CO2 splitting over iron-based redox materials via perovskite-mediated dealloying-exsolution cycles. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63857-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
39
|
Ma LH, Gao XH, Ma JJ, Hu XD, Zhang JL, Guo QJ. K/LaFeMnO3 Perovskite-Type Oxide Catalyst for the Production of C2–C4 Olefins via CO Hydrogenation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03744-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Zhang Z, Zhang S, Jiang C, Guo H, Qu F, Shimakawa Y, Yang M. Integrated sensing array of the perovskite-type LnFeO 3 (Ln˭La, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125380. [PMID: 33609880 DOI: 10.1016/j.jhazmat.2021.125380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Distinguishing toxic gases among the various volatile sulfur compounds (VSCs) is of significant practical value for atmospheric and environmental pollution monitoring, industrial monitoring, and even for medical diagnostics (where VSCs are indicators of diseases). The particular challenge lies in the detection and discrimination of sulfur-containing gases such as dimethyl disulfide (DMDS), methyl sulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) is of value. Herein, single-phase perovskite-type LnFeO3 nanoparticles were prepared by the citrate sol-gel method. Their gas sensing characteristics regard to the four typical VSCs were investigated. We found that the gas response of the p-type semiconductor LnFeO3 gas sensors to the four typical VSCs are significantly different. In addition, the sensors offer high performance, good tolerance to environmental changes and long-term stability for detecting VSCs gas at an operating temperature of 210 °C. A new design of sensor array was realized by integrating a series of LnFeO3 materials, which revealed excellent recognition ability for various VSCs, showing promise for real time monitoring.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Shendan Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinses Academy of Sciences, Beijing 100049, PR China
| | - Chunjie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China.
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Yuichi Shimakawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; Integrated Research Consortium on Chemical Sciences, Uji, Kyoto 611-0011, Japan
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
41
|
Abstract
Perovskite oxides are versatile materials due to their wide variety of compositions offering promising catalytic properties, especially in oxidation reactions. In the presented study, LaFe1−xCoxO3 perovskites were synthesized by hydroxycarbonate precursor co-precipitation and thermal decomposition thereof. Precursor and calcined materials were studied by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TG), and X-ray powder diffraction (XRD). The calcined catalysts were in addition studied by transmission electron microscopy (TEM) and N2 physisorption. The obtained perovskites were applied as catalysts in transient CO oxidation, and in operando studies of CO oxidation in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A pronounced increase in activity was already observed by incorporating 5% cobalt into the structure, which continued, though not linearly, at higher loadings. This could be most likely due to the enhanced redox properties as inferred by H2-temperature programmed reduction (H2-TPR). Catalysts with higher Co contents showing higher activities suffered less from surface deactivation related to carbonate poisoning. Despite the similarity in the crystalline structures upon Co incorporation, we observed a different promotion or suppression of various carbonate-related bands, which could indicate different surface properties of the catalysts, subsequently resulting in the observed non-linear CO oxidation activity trend at higher Co contents.
Collapse
|
42
|
Yuan E, Zhou M, Gu M, Jian P, Xia L, Xiao J. Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catal Letters 2021. [DOI: 10.1007/s10562-021-03638-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
44
|
Tian M, Wang C, Han Y, Wang X. Recent Advances of Oxygen Carriers for Chemical Looping Reforming of Methane. ChemCatChem 2021. [DOI: 10.1002/cctc.202001481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Chaojie Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
45
|
Liu W. Controlling lattice oxygen activity of oxygen carrier materials by design: a review and perspective. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00209k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lattice oxygen activity of oxygen carriers is critical to chemical looping processes and can be effectively controlled with prepared (i) solid solution mixtures, (ii) ternary oxide phases or (iii) core–shell structured oxygen carriers.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
46
|
Nzuzo Y, Adeyinka A, Carleschi E, Doyle BP, Bingwa N. Effect of d z2 orbital electron-distribution of La-based inorganic perovskites on surface kinetics of a model reaction. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00297j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanum-based perovskites, LaMO3 (M = Co, Fe, Mn, Ni, Cr, Cu, Zn) were synthesized using sol–gel method and characterised using both physical and chemical techniques.
Collapse
Affiliation(s)
- Yamkela Nzuzo
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg
- South Africa
| | - Adedapo Adeyinka
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg
- South Africa
| | | | - Bryan P. Doyle
- Department of Physics
- University of Johannesburg
- Johannesburg
- South Africa
| | - Ndzondelelo Bingwa
- Research Centre for Synthesis and Catalysis
- Department of Chemical Sciences
- University of Johannesburg
- Johannesburg
- South Africa
| |
Collapse
|
47
|
Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020. [DOI: 10.3390/catal10111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The catalytic performance of a series of La-Fe/AC catalysts was studied for the selective catalytic reduction (SCR) of NO by CO. With the increase in La content, the Fe2+/Fe3+ ratio and amount of surface oxygen vacancies (SOV) in the catalysts increased; thus the catalytic activity improved. Incorporating the promoters to La3-Fe1/active carbon (AC) catalyst could affect the catalyst activity by changing the electronic structure. The increase in Fe2+/Fe3+ ratio after the promoter addition is possibly due to the extra synergistic interaction of M (Mn and Ce) and Fe through the redox equilibrium of M3+ + Fe3+ ↔ M4+ + Fe2+. This phenomenon could have improved the redox cycle, enhanced the SOV formation, facilitated NO decomposition, and accelerated the CO-SCR process. The presence of O2 enhanced the formation of the C(O) complex and improved the activation of the metal site. Mn@La3-Fe1/AC catalyst revealed an excellent NO conversion of 93.8% at 400 °C in the presence of 10% oxygen. The high catalytic performance of MnOx and double exchange behavior of Mn3+ and Mn4+ can increase the number of SOV and improve the catalytic redox properties.
Collapse
|
48
|
Wang H, Zhang Y, Wu M, Xu H, Jin X, Zhou J, Hou Z. Pd/SiO 2 Catalysts Prepared via a Dielectric Barrier Discharge Hydrogen Plasma with Improved Performance for Low-Temperature Catalytic Combustion of Toluene. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310028, China
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Huayi Elec Apparatus Group Co. Ltd., 228 Central Avenue, Yueqing Economic Development Zone, Wenzhou, Zhejiang 325600, China
| | - Yifei Zhang
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Mingwei Wu
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - He Xu
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Xiaoyong Jin
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Jie Zhou
- College of Materials and Environmental Engineering, Xiasha University Park, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Zhaoyin Hou
- Key Lab of Applied Chemistry of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310028, China
| |
Collapse
|
49
|
Wu Y, Li D, Lu J, Xie S, Dong L, Fan M, Li B. LaMnO3-La2CuO4 two-phase synergistic system with broad active window in NOx efficient reduction. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Zhang L, Xu W, Wu J, Hu Y, Huang C, Zhu Y, Tian M, Kang Y, Pan X, Su Y, Wang J, Wang X. Identifying the Role of A-Site Cations in Modulating Oxygen Capacity of Iron-Based Perovskite for Enhanced Chemical Looping Methane-to-Syngas Conversion. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Weibin Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Yue Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanyan Zhu
- College of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Ming Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Kang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|