1
|
Li M, Chen K, Zhang D, Ye Z, Yang Z, Wang Q, Jiang Z, Zhang Y, Shang Y, Cao A. Wet-Spinning Carbon Nanotube/Shape Memory Polymer Composite Fibers with High Actuation Stress and Predesigned Shape Change. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404913. [PMID: 39119888 PMCID: PMC11481471 DOI: 10.1002/advs.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Actuators based on shape memory polymers and composites incorporating nanomaterial additives have been extensively studied; achieving both high output stress and precise shape change by low-cost, scalable methods is a long-term-desired yet challenging task. Here, conventional polymers (polyurea) and carbon nanotube (CNT) fillers are combined to fabricate reinforced composite fibers with exceptional actuation performance, by a wet-spinning method amenable for continuous production. It is found that a thermal-induced shrinkage step could obtain densified strong fibers, and the presence of CNTs effectively promotes the tensile orientation of polymer molecular chains, leading to much improved mechanical properties. Consequently, the CNT/ polyurea composite fibers exhibit stresses as high as 33 MPa within 0.36 s during thermal actuation, and stresses up to 22 MPa upon electrical stimulation enabled by the built-in conductive CNT networks. Utilizing the flexible thin fibers, various shape change behavior are also demonstrated including the conversion between different structures/curvatures, and recovery of predefined simple patterns. This high-performance composite fibers, capable of both thermal and electrical actuation and produced by low-cost materials and fabrication process, may find many potential applications in wearable devices, robotics, and biomedical areas.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Kun Chen
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Ding Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Ziming Ye
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Zifan Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Qi Wang
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Zhifan Jiang
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Yingjiu Zhang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Yuanyuan Shang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052China
| | - Anyuan Cao
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
2
|
Kong Q, Tan Y, Zhang H, Zhu T, Li Y, Xing Y, Wang X. Mimosa-Inspired Body Temperature-Responsive Shape Memory Polymer Networks: High Energy Densities and Multi-Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407596. [PMID: 39140246 PMCID: PMC11497007 DOI: 10.1002/advs.202407596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 08/15/2024]
Abstract
Inspired by the Mimosa plant, this study herein develops a unique dynamic shape memory polymer (SMP) network capable of transitioning from hard to pliable with heat, featuring reversible actuation, self-healing, recyclability, and degradability. This material is adept at simulating the functionalities of artificial muscles for a variety of tasks, with a remarkable specific energy density of 1.8 J g-1-≈46 times higher than that of human skeletal muscle. As an intelligent manipulator, it demonstrates remarkable proficiency in identifying and handling items at high temperatures. Its suitable rate of shape recovery around human body temperature indicates its promising utility as an implant material for addressing acute obstructions. The dynamic covalent bonding within the network structure not only provides excellent resistance to solvents but also bestows remarkable abilities for self-healing, reprocessing, and degradation. These attributes significantly boost its practicality and environmental sustainability. Anticipated to promote advancements in the sectors of biomedical devices, soft robotics, and smart actuators, this SMP network represents a forward leap in simulating artificial muscles, marking a stride toward the future of adaptive and sustainable technology.
Collapse
Affiliation(s)
- Qingming Kong
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yu Tan
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Haiyang Zhang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Tengyang Zhu
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yitan Li
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Xu Wang
- National Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| |
Collapse
|
3
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
4
|
Yi J, Ren X, Li Y, Yuan Y, Tang W, Wang X, Yu J, Yu S, Li W, Wang J, Loh XJ, Hu B, Chen X. Rapid-Response Water-Shrink Films with High Output Work Density Based on Polyethylene Oxide and α-Cyclodextrin for Autonomous Wound Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403551. [PMID: 38837826 DOI: 10.1002/adma.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.
Collapse
Affiliation(s)
- Junqi Yi
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoshi Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Shujin Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
6
|
Chen J, Wang Z, Yao B, Geng Y, Wang C, Xu J, Chen T, Jing J, Fu J. Ultra-Highly Stiff and Tough Shape Memory Polyurea with Unprecedented Energy Density by Precise Slight Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401178. [PMID: 38648568 DOI: 10.1002/adma.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.
Collapse
Affiliation(s)
- Jiaoyang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhifeng Wang
- Testing Center, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Bowen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
7
|
Shi CY, Qin WY, Qu DH. Semi-crystalline polymers with supramolecular synergistic interactions: from mechanical toughening to dynamic smart materials. Chem Sci 2024; 15:8295-8310. [PMID: 38846397 PMCID: PMC11151828 DOI: 10.1039/d4sc02089h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wen-Yu Qin
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
8
|
Risso G, Kudisch M, Ermanni P, Daraio C. Tuning the Properties of Multi-Stable Structures Post-Fabrication Via the Two-Way Shape Memory Polymer Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308903. [PMID: 38493311 DOI: 10.1002/advs.202308903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Multi-stable elements are commonly employed to design reconfigurable and adaptive structures, because they enable large and reversible shape changes in response to changing loads, while simultaneously allowing self-locking capabilities. However, existing multi-stable structures have properties that depend on their initial design and cannot be tailored post-fabrication. Here, a novel design approach is presented that combines multi-stable structures with two-way shape memory polymers. By leveraging both the one-way and two-way shape memory effect under bi-axial strain conditions, the structures can re-program their 3D shape, bear loads, and self-actuate. Results demonstrate that the structures' shape and stiffness can be tuned post-fabrication at the user's need and the multi-stability can be suppressed or activated on command. The control of multi-stability prevents undesired snapping of the structures and enables higher load-bearing capability, compared to conventional multi-stable systems. The proposed approach offers the possibility to augment the functionality of existing multi-stable concepts, showing potential for the realization of highly adaptable mechanical structures that can reversibly switch between being mono and multi-stable and that can undergo shape changes in response to a change in temperature.
Collapse
Affiliation(s)
- Giada Risso
- Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092, Zürich, Switzerland
| | - Max Kudisch
- Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Paolo Ermanni
- Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092, Zürich, Switzerland
| | - Chiara Daraio
- Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
9
|
Carden P, Ge S, Li B, Samanta S, Sokolov AP. Dynamics in polymers with phase separated dynamic bonds: the case of a peculiar temperature dependence. SOFT MATTER 2024; 20:3868-3876. [PMID: 38651737 DOI: 10.1039/d4sm00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The topic of polymers with dynamic bonds (stickers) appears as an exciting and promising area of materials science, thanks to their attractive self-healable, recyclable, extremely tough, and super extensible properties. Polymers with phase separated dynamic bonds revealed several unique properties, but mechanisms controlling their viscoelastic properties remain poorly understood. In this work, we present a dynamic analysis of a model polymer system with phase separated hydrogen bonding functionalities. The results confirm that terminal relaxation in these systems is independent of polymer segmental dynamics and is instead controlled by structural relaxations in clusters of stickers. Detailed analysis revealed a surprising result: terminal relaxation time of these systems has weaker temperature dependence than that of structural relaxation in clusters, although the former is slower than the latter. Borrowing ideas from the field of block copolymers, we ascribed this unusual result to an LCST-like behavior for the miscibility of the stickers in the polymer matrix. The presented results and ideas deepen the understanding of the viscoelasticity for polymers with dynamic bonds, enabling intelligent design of functional materials with desired macroscopic properties.
Collapse
Affiliation(s)
- Peyton Carden
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Sirui Ge
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
10
|
Chen K, Li M, Yang Z, Ye Z, Zhang D, Zhao B, Xia Z, Wang Q, Kong X, Shang Y, Liu C, Yu H, Cao A. Ultra-Large Stress and Strain Polymer Nanocomposite Actuators Incorporating a Mutually-Interpenetrated, Collective-Deformation Carbon Nanotube Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313354. [PMID: 38589015 DOI: 10.1002/adma.202313354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.
Collapse
Affiliation(s)
- Kun Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qi Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
11
|
Zhou SW, Zhou D, Gu R, Ma CS, Yu C, Qu DH. Mechanically interlocked [c2]daisy chain backbone enabling advanced shape-memory polymeric materials. Nat Commun 2024; 15:1690. [PMID: 38402228 PMCID: PMC10894290 DOI: 10.1038/s41467-024-45980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.
Collapse
Affiliation(s)
- Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Danlei Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengyuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
12
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Li C, Dong W, Li L, Dou Z, Li Y, Wei L, Zhang Q, Fu Q, Wu K. A strain-reinforcing elastomer adhesive with superior adhesive strength and toughness. MATERIALS HORIZONS 2023; 10:4183-4191. [PMID: 37534697 DOI: 10.1039/d3mh00966a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Strong and ductile adhesives often undergo both interfacial and cohesive failure during the debonding process. Herein, we report a rare self-reinforcing polyurethane adhesive that shows the different phenomenon of only interfacial failure yet still exhibiting superior adhesive strength and toughness. It is synthesized by designing a hanging adhesive moiety, hierarchical H-bond moieties, and a crystallizable soft segment into one macromolecular polyurethane. The former hanging adhesive moiety allows the hot-melt adhesive to effectively associate with the target substrate, providing sufficient adhesion energy; the latter hierarchical H-bond moieties and a crystallizable soft segment cooperate to enable the adhesive to undergo large lap-shear deformations through sacrificing weak bonds and mechano-responsive strength through the fundamental mechanism of strain-induced crystallization. As a result, this polyurethane adhesive can keep itself intact during the debonding process while still withstanding a high lap-shear strength and dissipating tremendous stress energy. Its adhesive strength and work of debonding are as high as 11.37 MPa and 10.32 kN m-1, respectively, outperforming most reported tough adhesives. This self-reinforcing adhesive is regarded as a new member of the family of strong and ductile adhesives, which will provide innovative chemical and structural inspirations for future conveniently detachable yet high-performance adhesives.
Collapse
Affiliation(s)
- Chuanlong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhan Li
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liuhe Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
14
|
Zhao Y, Wu H, Yin R, Yu C, Matyjaszewski K, Bockstaller MR. Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6990-6997. [PMID: 37719032 PMCID: PMC10501442 DOI: 10.1021/acs.chemmater.3c01234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Fan Y, Liu T, Li Y, Miao X, Chen B, Ding J, Dong Z, Rios O, Bao B, Lin Q, Zhu L. One-Step Manufacturing of Supramolecular Liquid-Crystal Elastomers by Stress-Induced Alignment and Hydrogen Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202308793. [PMID: 37496468 DOI: 10.1002/anie.202308793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed. The LCEs are hydrogen bond (H-bond) crosslinked main chain polymers comprising flexible short side chains. Applying a stretching/shear force to the LCE can simultaneously induce mesogen alignment and H-bond exchange, allowing for the formation of well-aligned LCE networks stabilized by H-bonds. Based on this working principle, soft actuators in fibers and 2D/3D objects can be manufactured by mechanical stretching or melt extrusion within a short time (e.g. <1 min). These actuators can perform reversible macroscopic motions with large, controlled deformations up to 38 %. The dynamic nature of H-bonds also provides the actuators with reprocessability and reprogrammability. Thus, this work opens the way for the one-step and custom manufacturing of soft actuators.
Collapse
Affiliation(s)
- Yuexin Fan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xuepei Miao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, P. R. China
| | - Baihang Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhixiang Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Orlando Rios
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
16
|
Rylski AK, Maraliga T, Wu Y, Recker EA, Arrowood AJ, Sanoja GE, Page ZA. Digital Light Processing 3D Printing of Soft Semicrystalline Acrylates with Localized Shape Memory and Stiffness Control. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418641 DOI: 10.1021/acsami.3c07172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Multimaterial three-dimensional (3D) printing of objects with spatially tunable thermomechanical properties and shape-memory behavior provides an attractive approach toward programmable "smart" plastics with applications in soft robotics and electronics. To date, digital light processing 3D printing has emerged as one of the fastest manufacturing methods that maintains high precision and resolution. Despite the common utility of semicrystalline polymers in stimuli-responsive materials, few reports exist whereby such polymers have been produced via digital light processing (DLP) 3D printing. Herein, two commodity long-alkyl chain acrylates (C18, stearyl and C12, lauryl) and mixtures therefrom are systematically examined as neat resin components for DLP 3D printing of semicrystalline polymer networks. Tailoring the stearyl/lauryl acrylate ratio results in a wide breadth of thermomechanical properties, including tensile stiffness spanning three orders of magnitude and temperatures from below room temperature (2 °C) to above body temperature (50 °C). This breadth is attributed primarily to changes in the degree of crystallinity. Favorably, the relationship between resin composition and the degree of crystallinity is quadratic, making the thermomechanical properties reproducible and easily programmable. Furthermore, the shape-memory behavior of 3D-printed objects upon thermal cycling is characterized, showing good fatigue resistance and work output. Finally, multimaterial 3D-printed structures with vertical gradation in composition are demonstrated where concomitant localization of thermomechanical properties enables multistage shape-memory and strain-selective behavior. The present platform represents a promising route toward customizable actuators for biomedical applications.
Collapse
Affiliation(s)
- Adrian K Rylski
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tejas Maraliga
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yudian Wu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Elizabeth A Recker
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony J Arrowood
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Cooper CB, Root SE, Michalek L, Wu S, Lai JC, Khatib M, Oyakhire ST, Zhao R, Qin J, Bao Z. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science 2023; 380:935-941. [PMID: 37262169 DOI: 10.1126/science.adh0619] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.
Collapse
Affiliation(s)
- Christopher B Cooper
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Solomon T Oyakhire
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Xu Z, Liu YB, Wei DW, Bao RY, Wang Y, Ke K, Yang W. Configurational Entropy Regulation in Polyolefin Elastomer/Paraffin Wax Vitrimers by Thermally Responsive Liquid-Solid Transition for Force Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12423-12433. [PMID: 36821339 DOI: 10.1021/acsami.2c22997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The work output of shape memory polymers during shape shifting is desired for practical application as actuators. Herein, a polyolefin elastomer (POE) and paraffin wax (PW) are co-cross-linked by dynamic boronic ester bonds to enhance the network elasticity and the stress transfer between the two phases, endowing high force storage capacity to the prepared vitrimers. Depending on the phase of PW, one-way force storage is realized by programming at a low temperature (25 °C), owing to which solid PW can promote the locking of POE chains in a low-entropy state, while reversible force storage can be realized by programming at a high temperature (75 °C), owing to which the relaxation of chains facilitated by liquid PW can promote the construction of a stable structure. Based on one-way force storage, a weight-lifting machine with a weight of 20 mg prestrained at 25 °C can lift a 100 g weight, showing a lifting ratio of no less than 5000, with a high work output of 0.98 J/g. A high-temperature alarm can be triggered at varied temperatures (43-56 °C) through controlled force release by adjusting the PW content and programmed prestrains. Based on the reversible force storage, crawling robots and artificial muscles with a work output of 0.025 J/g are demonstrated. The dynamic cross-linking network also confers mold-free self-healing capability to POE/PW vitrimers, and the repair efficiency is enhanced compared with the POE vitrimer due to the improved POE chain motion by liquid PW. The realized one-way and reversible force storage and self-healing by POE/PW vitrimers pave the way for the application of SMPs in the fields of soft robotic actuators.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yong-Bo Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
20
|
Yin Y, Xu Y, Zhang X, Duan B, Xin Z, Bao C. Mechanically Strong and Tough Poly(urea-urethane) Thermosets Capable of Being Degraded under Mild Condition. Macromol Rapid Commun 2023; 44:e2200765. [PMID: 36419259 DOI: 10.1002/marc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The development of degradable polymeric materials such as degradable polyurethane or polyurea has been much highlighted for resource conservation and environmental protection. Herein, a facile strategy of constructing mechanically strong and tough poly(urea-urethane) (PUU) thermosets that can be degraded under mild conditions by using triple boron-urethane bonds (TBUB) as cross-linkers is demonstrated. By tailoring the molecular weight of the soft segment of the prepolymers, the mechanical performance can be finely controlled. Based on the cross-linking of TBUB units and hydrogen-binding interactions between TBUB linkages, the as-prepared PUU thermosets have excellent mechanical strength of ≈40.2 MPa and toughness of ≈304.9 MJ m-3 . Typically, the PBUU900 strip can lift a barbell with 60 000 times its own weight, showing excellent load-bearing capacity. Meanwhile, owing to the covalent cross-linking of TBUB units, all the PUU thermosets show initial decomposition temperatures over 290 °C, which are comparable to those of the traditional thermosets. Moreover, the TBUB cross-linked PUU thermosets can be easily degraded in a mild acid solution. The small pieces of the PBUU sample can be fully decomposed in 1 m HCl/THF solution for 3.5 h at room temperature.
Collapse
Affiliation(s)
- Yanlong Yin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yang Xu
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuhao Zhang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Baorong Duan
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhirong Xin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyang Bao
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
21
|
Ma Y, Zhao J, Wang Y, Pang B, Wu Y, Gao C. Poly(lactic acid) based Pearl Layer Moistureproof Membrane for Flexible Laminated Packaging. Macromol Rapid Commun 2023; 44:e2200868. [PMID: 36755508 DOI: 10.1002/marc.202200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/29/2023] [Indexed: 02/10/2023]
Abstract
The development of bio-based polymer materials, such as polylactic acid (PLA) -based polymers, is an effective strategy to reduce dependence on petrochemical-based polymers. However, the preparation of bio-based polymers with high barrier properties is a major challenge. To overcome this challenge, a nacreous layer structure with a ' brick and mud ' pattern is mimicked to improve the overall performance of the material. In this paper, Poly (L -lactic acid) (PLLA) and Polypropylene Glycol (PPG) was combined to prepare bio-based polyurethane (PU-PLLA), which is used as the slurry structure of nacreous layer. The bio-based biomimetic composite membrane (PU-PLLA/BN) is then obtained by adding boron nitride (BN, brick structure of pearl layer) to it. The water vapor permeability test results show that the permeability of PU-PLLA material can be reduced by more than 50% by 5 wt.% BN, which is because the addition of BN can increase the length and tortuosity of the gas molecular diffusion path in the composite. Therefore, this pearl-inspired PU-PLLA/BN film has excellent moisture resistance, which opens up a broad road for the practical application of PLLA in flexible laminated packaging.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingming Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanqing Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Pang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
22
|
Li JQ, Li WS, Zhang WT, Zhu S, Luo CY, Liu WS, Zhang LY. Enhancing Molecular Chain Entanglement and π-π Stacking Toward the Improvement of Shape Memory Performance of Polyimide. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Liu W, He Y, Leng J. Humidity-Responsive Shape Memory Polyurea with a High Energy Output Based on Reversible Cross-Linked Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2163-2171. [PMID: 36571177 DOI: 10.1021/acsami.2c18489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-performance shape memory polymers with multifunctions are essential in sensors, wearable flexible electronics, artificial muscle actuators, and reversible morphing structures. In this work, a transparent and humidity-responsive shape memory polyurea featuring a high tensile strength (51 MPa), a high recovery stress (12 MPa) with an high energy output (0.98 J/g), and tolerance to extreme environments (retains great malleability at -196 °C) is prepared through constructing a bioinspired hard-soft nanophase structure and through hierarchical hydrogen bonding in the molecular network. The hard segment of a strong hydrogen bonding region is in charge of humidity-responsive behavior, and the soft segment of a weak bonding region provides the flexibility of the molecular chain. Furthermore, the periodicity of the phase-separated domains is 12 nm as characterized by small-angle X-ray scattering. The hydrogen bonding cross-linked network can be opened under the action of stress and re-bonded by heating, just like a zipper structure of reversible linking property. This unique molecular structure contributes to the humidity-responsive behavior of polyurea rolling up 160° in 20 s on the palm, as well as a high energy output lifting a 100 g weight exceeding 1631 times its own mass to 60 mm. The molecular structure of the hard-soft nanophase and the hierarchical hydrogen bonding offer an effective approach toward achieving a high-performance shape memory polymer with humidity-sensitive functions.
Collapse
Affiliation(s)
- Wen Liu
- Center for Composite Materials and Structures, Harbin Institute of Technology, 150080Harbin, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology, 150080Harbin, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, 150080Harbin, P. R. China
| |
Collapse
|
24
|
Aijaz MO, Yang SB, Karim MR, Alnaser IA, Alahmari AD, Almubaddel FS, Assaifan AK. Preparation and Characterization of Electrospun Poly(lactic acid)/Poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol)/Silicon Dioxide Nanofibrous Adsorbents for Selective Copper (II) Ions Removal from Wastewater. MEMBRANES 2023; 13:membranes13010054. [PMID: 36676861 PMCID: PMC9863775 DOI: 10.3390/membranes13010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 05/15/2023]
Abstract
The problem of industrial wastewater containing heavy metals is always a big concern, especially Cu2+, which interprets the soil activity in farmland and leaves a negative impact on the environment by damaging the health of animals. Various methods have been proposed as countermeasures against heavy-metal contaminations, and, as a part of this, an electrospun nanofibrous adsorption method for wastewater treatment is presented as an alternative. Poly(lactic acid) (PLA) is a biopolymer with an intrinsic hydrophobic property that has been considered one of the sustainable nanofibrous adsorbents for carrying adsorbate. Due to the hydrophobic nature of PLA, it is difficult to adsorb Cu2+ contained in wastewater. In this study, the hydrophilic PLA/poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) nanofibrous adsorbents with different silicon dioxide (SiO2) concentrations were successfully prepared by electrospinning. A hydrophilic group of PEG-PPG-PEG was imparted in PLA by the blending method. The prepared PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were analyzed with their morphological, contact angle analysis, and chemical structure. The Cu2+ adsorption capacities of the different PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were also investigated. The adsorption results indicated that the Cu2+ removal capacity of PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents was higher than that of pure ones. Additionally, as an affinity nanofibrous adsorbent, its adsorption capacity was maintained after multiple recycling processes (desorption and re-adsorption). It is expected to be a promising nanofibrous adsorbents that will adsorb Cu2+ for wastewater treatment.
Collapse
Affiliation(s)
- Muhammad Omer Aijaz
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
- Correspondence: (M.O.A.); (M.R.K.)
| | - Seong Baek Yang
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad Rezaul Karim
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
- Correspondence: (M.O.A.); (M.R.K.)
| | - Ibrahim Abdullah Alnaser
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Fahad S. Almubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Abdulaziz K. Assaifan
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
25
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
26
|
Halbardier L, Goldbach E, Croutxé-Barghorn C, Schuller AS, Allonas X. Combined aza-Michael and radical photopolymerization reactions for enhanced mechanical properties of 3D printed shape memory polymers. RSC Adv 2022; 12:30381-30385. [PMID: 36337947 PMCID: PMC9593170 DOI: 10.1039/d2ra05404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
3D printed shape memory polymers (SMP) were formed by combining aza-Michael addition and light initiated radical polymerization. Amine consumption and acrylate conversion were monitored by 1H-NMR and Fourier transform infrared spectroscopies. Dynamic mechanical analysis and cyclic thermomechanical tensile tests enabled direct observation of the polymer network changes. Increased homogeneity of the 3D network and enhanced SMP properties were achieved after the reaction between residual acrylate functions trapped in the vitrified medium with the secondary amines formed during the process. This allows the fabrication of shape memory objects by 3D printing.
Collapse
Affiliation(s)
- Lucile Halbardier
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, Institut Jean Baptiste Donnet 3b rue Alfred Werner 68093 Mulhouse Cedex France
| | - Emile Goldbach
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, Institut Jean Baptiste Donnet 3b rue Alfred Werner 68093 Mulhouse Cedex France
| | - Céline Croutxé-Barghorn
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, Institut Jean Baptiste Donnet 3b rue Alfred Werner 68093 Mulhouse Cedex France
| | - Anne-Sophie Schuller
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, Institut Jean Baptiste Donnet 3b rue Alfred Werner 68093 Mulhouse Cedex France
| | - Xavier Allonas
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, Institut Jean Baptiste Donnet 3b rue Alfred Werner 68093 Mulhouse Cedex France
| |
Collapse
|
27
|
Yang Y, Wang C, Zhou W, Xiao Y, Wang L, Liu X, Zhou S, Li D, Liu Y, Zhou C. Recyclable shape memory polymers with independent honeycomb crosslinked polymer actuators and temperature response switches inspired by bow principle. J Appl Polym Sci 2022. [DOI: 10.1002/app.53166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Chune Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Wenyan Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Yu Xiao
- Department of Civil Engineering, College of Mechanics and Engineering Science Shanghai University Shanghai China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Shiyi Zhou
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu People's Republic of China
| | - Dejiang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Yang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
| | - Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang China
- Department of Research and Development Hubei Three Gorges Laboratory Yichang China
| |
Collapse
|
28
|
Ma J, Wen S, Yue Z. A stretchable and healable elastomer with shape memory capability based on multiple hydrogen bonds. RSC Adv 2022; 12:21512-21519. [PMID: 35975089 PMCID: PMC9347211 DOI: 10.1039/d2ra03250c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Although a wide range of self-healing materials have been reported by researchers, it is still a challenge to endow exceptional mechanical properties and shape memory characteristics simultaneously in a single material. Inspired by the structure of natural silk, herein, we have adopted a simple synthetic method to prepare a kind of elastomer (HM-PUs) with stiff, healable and shape memory capabilities assisted by multiple hydrogen bonds. The self-healing elastomer exhibits a maximum tensile strength of 39 MPa, toughness of 111.65 MJ m−3 and self-healing efficiency of 96%. Moreover, the recuperative efficiency of shape memory could reach 100%. The fundamental study of HM-PUs will facilitate the development of flexible electronics and medical materials. Although a wide range of self-healing materials have been reported by researchers, it is still a challenge to endow exceptional mechanical properties and shape memory characteristics simultaneously in a single material.![]()
Collapse
Affiliation(s)
- Jiacheng Ma
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| | - Shifeng Wen
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| | - Zhufeng Yue
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| |
Collapse
|
29
|
Xu H, Tu J, Ji J, Liang L, Li H, Li P, Zhang X, Gong Q, Guo X. Ultra-High-Strength Self-healing Supramolecular Polyurethane Based on Successive Loose Hydrogen-Bonded Hard Segment Structures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Fulati A, Uto K, Iwanaga M, Watanabe M, Ebara M. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma. Adv Healthc Mater 2022; 11:e2200050. [PMID: 35385611 DOI: 10.1002/adhm.202200050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Shape-memory polymers (SMPs) are promising materials in numerous emerging biomedical applications owing to their unique shape-memory characteristics. However, simultaneous realization of high strength, toughness, stretchability while maintaining high shape fixity (Rf ) and shape recovery ratio (Rr ) remains a challenge that hinders their practical applications. Herein, a novel shape-memory polymeric string (SMP string) that is ultra-stretchable (up to 1570%), strong (up to 345 MPa), tough (up to 237.9 MJ m-3 ), and highly recoverable (Rf averagely above 99.5%, Rr averagely above 99.1%) through a facile approach fabricated solely by tetra-branched poly(ε-caprolactone) (PCL) is reported. Notably, the shape-memory contraction force (up to 7.97 N) of this SMP string is customizable with the manipulation of their energy storage capacity by adjusting the string thickness and stretchability. In addition, this SMP string displays a controllable shape-memory response time and demonstrates excellent shape-memory-induced contraction effect against both rigid silicone tubes and porcine carotids. This novel SMP string is envisioned to be applied in the contraction of blood vessels and resolves the difficulties in the restriction of blood flow in minimally invasive surgeries such as fetoscopic surgery of sacrococcygeal teratoma (SCT).
Collapse
Affiliation(s)
- Ailifeire Fulati
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
| | - Koichiro Uto
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Masanobu Iwanaga
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Miho Watanabe
- Department of Pediatric Surgery Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
- Graduate School of Advanced Engineering Tokyo University of Science Tokyo 1258585 Japan
| |
Collapse
|
31
|
Ge S, Samanta S, Li B, Carden GP, Cao PF, Sokolov AP. Unravelling the Mechanism of Viscoelasticity in Polymers with Phase-Separated Dynamic Bonds. ACS NANO 2022; 16:4746-4755. [PMID: 35234439 DOI: 10.1021/acsnano.2c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Incorporation of dynamic (reversible) bonds within polymer structure enables properties such as self-healing, shape transformation, and recyclability. These dynamic bonds, sometimes refer as stickers, can form clusters by phase-segregation from the polymer matrix. These systems can exhibit interesting viscoelastic properties with an unusually high and extremely long rubbery plateau. Understanding how viscoelastic properties of these materials are controlled by the hierarchical structure is crucial for engineering of recyclable materials for various future applications. Here we studied such systems made from short telechelic polydimethylsiloxane chains by employing a broad range of experimental techniques. We demonstrate that formation of a percolated network of interfacial layers surrounding clusters enhances mechanical modulus in these phase-separated systems, whereas single chain hopping between the clusters results in macroscopic flow. On the basis of the results, we formulated a general scenario describing viscoelastic properties of phase-separated dynamic polymers, which will foster development of recyclable materials with tunable rheological properties.
Collapse
Affiliation(s)
- Sirui Ge
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - G Peyton Carden
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
32
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
33
|
Lendlein A, Heuchel M. Shape-Memory Polymers Designed in View of Thermomechanical Energy Storage and Conversion Systems. ACS CENTRAL SCIENCE 2021; 7:1599-1601. [PMID: 34729401 PMCID: PMC8554782 DOI: 10.1021/acscentsci.1c01032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Andreas Lendlein
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Matthias Heuchel
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| |
Collapse
|