1
|
Marelli M, Perez Schmidt P, Nguyen XT, Pitzalis E, Poggini L, Ragona L, Pagano K, Aronica LA, Polito L, Evangelisti C. Photo-induced microfluidic production of ultrasmall platinum nanoparticles. NANOSCALE 2024; 16:19669-19674. [PMID: 39385674 DOI: 10.1039/d4nr02971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We describe here the synthesis of ultrasmall Pt nanoparticles (NPs) obtained by a robust and reliable protocol using UV-Vis photoreduction of a platinum salt precursor, under continuous flow conditions. These ligand-free Pt NPs were rapidly dispersed onto a solid support or stabilized towards aggregation as a colloidal solution by the addition of an appropriate ligand in the reaction mixture. The proposed protocol exploits a microfluidic platform where the Pt4+ precursor is photo-reduced to small Pt0 NPs (1.3 nm) at room temperature in the presence of ethanol, without any additional reducing agent. We apply the protocol to prepare Pt NPs highly dispersed on carbon support (Pt/C) proven to be a very efficient heterogeneous catalyst for both the hydrosilylation of terminal alkynes and hydrogenation of nitroaromatic compounds, selected as model reactions. Furthermore, we exploit the versatility of this microfluidic approach to produce stabilized aqueous/ethanol colloidal solutions of Pt NPs, employing a ligand of choice (e.g., PVP or a thiol-ligand). These colloids offer long-term storage and further ligand modification. We showcase the synthesis of biocompatible glycol-stabilized Pt nanoparticles as an exemplary application.
Collapse
Affiliation(s)
- Marcello Marelli
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Patricia Perez Schmidt
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Xuan Trung Nguyen
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Emanuela Pitzalis
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Lorenzo Poggini
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Laura Ragona
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Katiuscia Pagano
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Laura Antonella Aronica
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Laura Polito
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Claudio Evangelisti
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Lu Y, Zhu M, Chen S, Yao J, Li T, Wang X, Tang C. Single-Atom Fe-Catalyzed Acceptorless Dehydrogenative Coupling to Quinolines. J Am Chem Soc 2024; 146:23338-23347. [PMID: 39105742 DOI: 10.1021/jacs.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A single-atom iron catalyst was found to exhibit exceptional reactivity in acceptorless dehydrogenative coupling for quinoline synthesis, outperforming known homogeneous and nanocatalyst systems. Detailed characterizations, including aberration-corrected HAADF-STEM, XANES, and EXAFS, jointly confirmed the presence of atomically dispersed iron centers. Various functionalized quinolines were efficiently synthesized from different amino alcohols and a range of ketones or alcohols. The iron single-atom catalyst achieved a turnover number (TON) of up to 105, far exceeding the results of current homogeneous and nanocatalyst systems. Detailed mechanistic studies verified the significance of single-atom Fe sites in the dehydrogenation process.
Collapse
Affiliation(s)
- Yanze Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Meiling Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiewen Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Lancaster H, Goodall JC, Douglas SP, Ashfield LJ, Duckett SB, Perutz RN, Weller AS. Platinum(II) Phenylpyridyl Schiff Base Complexes as Latent, Photoactivated, Alkene Hydrosilylation Catalysts. ACS Catal 2024; 14:7492-7505. [PMID: 38779183 PMCID: PMC11106775 DOI: 10.1021/acscatal.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Photoactivated catalysts for the hydrosilylation of alkenes with silanes offer temporal control in manufacturing processes that require silicone curing. We report the development of a range of air-stable Pt(II) (salicylaldimine)(phenylpyridyl), [Pt(sal)(ppy)], complexes as photoinitiated hydrosilylation catalysts. Some of these catalysts show appreciable latency in thermal catalysis and can also be rapidly (10 s) activated by a LED UV-light source (365 nm), to give systems that selectively couple trimethylvinylsilane and hexamethylsiloxymethylsilane to give the linear hydrosilylation product. Although an undetectable (by NMR spectroscopy) amount of precatalyst is converted to the active form under UV-irradiation in the timescale required to initiate hydrosilylation, clean and reliable kinetics can be measured for these systems that allow for a detailed mechanism to be developed for Pt(sal)(ppy)-based photoactivated hydrosilylation. The suggested mechanism is shown to have close parallels with, but also subtle differences from, those previously proposed for thermally-activated Karstedt-type Pt(0) systems.
Collapse
Affiliation(s)
- Helena
G. Lancaster
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Joe C. Goodall
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Samuel P. Douglas
- Johnson
Matthey Technology Center, Blounts Court Road, Sonning Common, Reading RG4 9NH, U.K.
| | - Laura J. Ashfield
- Johnson
Matthey Technology Center, Blounts Court Road, Sonning Common, Reading RG4 9NH, U.K.
| | - Simon B. Duckett
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Andrew S. Weller
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
5
|
Chen Y, Zhang R, Chen Z, Liao J, Song X, Liang X, Wang Y, Dong J, Singh CV, Wang D, Li Y, Toste FD, Zhao J. Heterogeneous Rhodium Single-Atom-Site Catalyst Enables Chemoselective Carbene N-H Bond Insertion. J Am Chem Soc 2024; 146:10847-10856. [PMID: 38583085 PMCID: PMC11027138 DOI: 10.1021/jacs.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Transition-metal-catalyzed carbene insertion reactions of a nitrogen-hydrogen bond have emerged as robust and versatile methods for the construction of C-N bonds. While significant progress of homogeneous catalytic metal carbene N-H insertions has been achieved, the control of chemoselectivity in the field remains challenging due to the high electrophilicity of the metal carbene intermediates. Herein, we present an efficient strategy for the synthesis of a rhodium single-atom-site catalyst (Rh-SA) that incorporates a Rh atom surrounded by three nitrogen atoms and one phosphorus atom doped in a carbon support. This Rh-SA catalyst, with a catalyst loading of only 0.15 mol %, exhibited exceptional catalytic performance for heterogeneous carbene insertion with various anilines and heteroaryl amines in combination with diazo esters. Importantly, the heterogeneous catalyst selectively transformed aniline derivatives bearing multiple nucleophilic moieties into single N-H insertion isomers, while the popular homogeneous Rh2(OAc)4 catalyst produced a mixture of overfunctionalized side products. Additionally, similar selectivities for N-H bond insertion with a set of stereoelectronically diverse diazo esters were obtained, highlighting the general applicability of this heterogeneous catalysis approach. On the basis of density functional theory calculations, the observed selectivity of the Rh-SA catalyst was attributed to the insertion barriers and the accelerated proton transfer assisted by the phosphorus atom in the support. Overall, this investigation of heterogeneous metal-catalyzed carbene insertion underscores the potential of single-atom-site catalysis as a powerful and complementary tool in organic synthesis.
Collapse
Affiliation(s)
- Yuanjun Chen
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Ruixue Zhang
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Zhiwen Chen
- Department
of Materials Science and Engineering, University
of Toronto, Toronto, Ontario M5S3E4, Canada
| | - Jiangwen Liao
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xuedong Song
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Xiao Liang
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yu Wang
- Shanghai
Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced
Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People’s Republic of China
| | - Juncai Dong
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chandra Veer Singh
- Department
of Materials Science and Engineering, University
of Toronto, Toronto, Ontario M5S3E4, Canada
| | - Dingsheng Wang
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yadong Li
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - F. Dean Toste
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jie Zhao
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
6
|
Xue W, Jiang Y, Lu H, You B, Wang X, Tang C. Direct C-C Double Bond Cleavage of Alkenes Enabled by Highly Dispersed Cobalt Catalyst and Hydroxylamine. Angew Chem Int Ed Engl 2023; 62:e202314364. [PMID: 37964715 DOI: 10.1002/anie.202314364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
The utilization of a single-atom catalyst to break C-C bonds merges the merits of homogeneous and heterogeneous catalysis and presents an intriguing pathway for obtaining high-value-added products. Herein, a mild, selective, and sustainable oxidative cleavage of alkene to form oxime ether or nitrile was achieved by using atomically dispersed cobalt catalyst and hydroxylamine. Diversified substrate patterns, including symmetrical and unsymmetrical alkenes, di- and tri-substituted alkenes, and late-stage functionalization of complex alkenes were demonstrated. The reaction was successfully scaled up and demonstrated good performance in recycling experiments. The hot filtration test, catalyst poisoning and radical scavenger experiment, time kinetics, and studies on the reaction intermediate collectively pointed to a radical mechanism with cobalt/acid/O2 promoted C-C bond cleavage as the key step.
Collapse
Affiliation(s)
- Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yijie Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Maliszewski BP, Casillo E, Lambert P, Nahra F, Cazin CSJ, Nolan SP. Simply accessible platinum(II) complexes enabling alkene hydrosilylation at ppm catalyst loadings. Chem Commun (Camb) 2023; 59:14017-14020. [PMID: 37942945 DOI: 10.1039/d3cc05033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
An efficient olefin hydrosilylation protocol utilising Pt(II)-thioether-based pre-catalysts is reported. These simple and readily available complexes exhibit excellent catalytic performance and offer significant advantages over existing alternatives, enabling rapid and high conversions at ppm-level catalyst loadings.
Collapse
Affiliation(s)
- Benon P Maliszewski
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Eleonora Casillo
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Perrine Lambert
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
- VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium.
| |
Collapse
|
8
|
Rahmani A, Sultanov MA, Kamiru-White K, Shultz-Johnson LR, Butkus BE, Xie S, Liu F, Nguyen DTH, Wilson-Faubert N, Nazemi A, Banerjee P, Zhai L, Delferro M, Wen J, Jurca T. Ultrathin Atomic Layer Deposited Al 2O 3 Overcoat Stabilizes Al 2O 3-Pt/Ni-Foam Hydrogenation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43756-43766. [PMID: 37695888 DOI: 10.1021/acsami.3c08545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Galvanic exchange seeds the growth of Pt nanostructures on the Ni foam monolith. Subsequent atomic layer deposition of ultrathin Al2O3 followed by annealing under air affords supported Pt catalysts with ultralow loading (0.020 ppm). In addition to the expected enhancement of the stability of the Pt particles on the surface, the ∼2 nm Al2O3 overcoat appears to also play a crucial role in the overall structural integrity of the NiOx nanoplates that grow on the Ni foam surface as a result of the preparative route. The resulting material is physically robust toward repeated handling and showcases retention of catalytic activity over 10 standard catalyst recycling trials, standing in marked contrast to the uncoated samples. Catalyst activity was tested via the hydrogenation of various functionalized styrenes at low temperatures and low hydrogen pressure in ethanol as a solvent, with a TOF as high as 9.5 × 106 h-1 for unfunctionalized styrene. Notably, the catalysts show excellent tolerance toward F, Cl, and Br substituents and no hydrogenation of the aromatic ring.
Collapse
Affiliation(s)
- Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Maksim A Sultanov
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Kemah Kamiru-White
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Brian E Butkus
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Diep T H Nguyen
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Noémie Wilson-Faubert
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Ali Nazemi
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Parag Banerjee
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
9
|
Stefanowska K, Nagórny J, Szyling J, Franczyk A. Functionalization of octaspherosilicate (HSiMe 2O) 8Si 8O 12 with buta-1,3-diynes by hydrosilylation. Sci Rep 2023; 13:14314. [PMID: 37653063 PMCID: PMC10471723 DOI: 10.1038/s41598-023-41461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrosilylation with octaspherosilicate (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and macromolecular systems so far, making this method the most popular in the synthesis of siloxane-based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective reaction with 1,3-diynes, which allows for the formation of new products with unique properties. Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and non-symmetrically 1,4-disubstituted buta-1,3-diynes with 1. The compounds obtained bear double and triple bonds and other functionalities (e.g., Br, F, OH, SiR3), making them highly desirable, giant building blocks in organic synthesis and material chemistry. These compounds were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, and MALDI TOF MS, EA, UV-Vis, and TGA analysis. The TGA proved their high thermal stability up to 427 ℃ (Td10%) for compound 3j.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jakub Nagórny
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Chen M, Chen P, Ji Z, Yu M, Tan J, Fu B, Zhu X. Recyclable TPA-Modified MIL-88-Supported Ionic Pt as a Highly Efficient Catalyst for Alkene Hydrosilylation. ACS OMEGA 2023; 8:13323-13331. [PMID: 37065068 PMCID: PMC10099423 DOI: 10.1021/acsomega.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The hydrosilylation reaction driven by a homogeneous catalyst has been widely used in the industrial synthesis of functionalized silicone compounds. However, the homogeneous catalyst for hydrosilylation has the shortcomings of nonrecyclability, undesirable side reactions, and high cost. In this work, a highly efficient heterogeneous catalyst was prepared by loading Pt ions on MIL-88 modified with trimethoxy[3-(phenylamino)propyl]silane. In comparison with previous research studies, the resulting catalyst can exhibit high catalytic activity and excellent stability during the hydrosilylation reaction, which was attributed to the presence of a pyrrolic nitrogen structure between TPA-MIL-88 and the Pt ion. Besides them, 1.2%Pt/TPA-MIL-88 showed the highest catalytic activity and can be reused five times without significant deactivation. Importantly, 1.2%Pt/TPA-MIL-88 also achieved satisfactory results when it was used to catalyze the hydrosilylation reaction for other olefins, implying great potential for application in the silicone industry.
Collapse
|
11
|
Zhou Y, Song Y, Yang F, Liu Y, Chang J, Teng B. Theoretical exploration of Rh1/CeO2 catalysts with high performance using CO oxidation as a probe reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Xue W, Zhu Z, Chen S, You B, Tang C. Atomically Dispersed Co-N/C Catalyst for Divergent Synthesis of Nitrogen-Containing Compounds from Alkenes. J Am Chem Soc 2023; 145:4142-4149. [PMID: 36753512 DOI: 10.1021/jacs.2c12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alkene functionalization with a single-atom catalyst (SAC) which merges homogeneous and heterogeneous catalysis is a fascinating route to obtain high-value-added molecules. However, C-N bond formation of alkene with SAC is still unexplored. Herein, a bimetal-organic framework-derived Co-N/C catalyst with an atomically dispersed cobalt center is reported to show good activity of chemoselective aziridination/oxyamination reactions from alkene and hydroxylamine, and late-stage functionalization of complex alkenes and diversified synthetic transformations of the aziridine product further expand the utility of this method. Moreover, this system proceeds without external oxidants and exhibits mild, atom-economic, and recyclable characters. Detailed spectroscopic characterizations and mechanistic studies revealed the structure of the catalytic center and possible intermediates involved in the mechanism cycle.
Collapse
Affiliation(s)
- Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zhiwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Vicchio SP, Chen Z, Chapman KW, Getman RB. Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal-Organic Framework NU-1000. J Am Chem Soc 2023; 145:2852-2859. [PMID: 36693214 DOI: 10.1021/jacs.2c10554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heterogeneous catalysts exhibit significant changes in composition due to the influence of operating conditions, and these compositional changes can have dramatic effects on catalytic performance. For traditional bulk metal heterogeneous catalysts, relationships between composition and catalytic operating conditions are well documented. However, the influence of operating conditions on the compositions of single-site heterogeneous catalysts remains largely unresolved. To address this, we report a combined computational and experimental characterization of a Ni oxo catalyst under catalytic hydrogenation conditions. Specifically, pair distribution function (PDF) analysis is combined with ab initio thermodynamic modeling to investigate ligand environments present on a Ni oxo cluster supported in the metal-organic framework NU-1000. Comparisons of the experimentally observed and simulated Ni-O coordination numbers and Ni-O, Ni···Ni, and Ni···Zr distances provide insight into the Ni ligand environment under H2 (g). These comparisons suggest significant OH and H2O content and, further, that different Ni ions within the cluster and/or NU-1000 structure may comprise subtly different numbers of these ligands. Further, the observation of significant H2O content under H2 (g) suggests that the NU-1000 support supplies H2O to the cluster. Examples of ligand environments that could lead to the observed PDFs are provided. The combination of simulations and experiments provides new insights into the ligand environment for Ni-NU-1000 catalysts that will be useful for understanding the ligand environments of other single-site Ni catalysts as well.
Collapse
Affiliation(s)
- Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
14
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
15
|
Huo YP, Liu F, Wu JP, Zhang YK, Feng CM, Peng Y. Platinum Immobilized in Imidazolyl Schiff Base-Containing Nitrogen-Rich Covalent Organic Polymer as a Catalyst for Hydrosilylation. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Recyclable and Convenient-to-Handle Pt/Ethylene Glycol Catalytic System – an Approach to Sustainable Hydrosilylation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhang T, Li M, Zheng P, Li J, Gao J, He H, Gu F, Chen W, Ji Y, Zhong Z, Bai D, Xu G, Su F. Highly Efficient Hydrosilylation of Ethyne over Pt/ZrO 2 Catalysts with Size-Dependent Metal–Support Interactions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tengfei Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingyan Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
- Key Laboratory of Resources Chemicals and Materials, Ministry of Education, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Peng Zheng
- Key Laboratory of Resources Chemicals and Materials, Ministry of Education, Shenyang University of Chemical Technology, Shenyang110142, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Jing Li
- Institute of Science and Technology, China Three Gorges Corporation, Beijing100049, China
| | - Jiajian Gao
- A*STAR, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island627833, Singapore
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Fangna Gu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing100048, China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou515063, China
- Technion-Israel Institute of Technology (IIT), Haifa32000, Israel
| | - Dingrong Bai
- Key Laboratory of Resources Chemicals and Materials, Ministry of Education, Shenyang University of Chemical Technology, Shenyang110142, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Guangwen Xu
- Key Laboratory of Resources Chemicals and Materials, Ministry of Education, Shenyang University of Chemical Technology, Shenyang110142, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang110142, China
| |
Collapse
|
18
|
Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Batista ATF, Chizallet C, Diehl F, Taleb AL, Gay AS, Ersen O, Raybaud P. Evaluating acid and metallic site proximity in Pt/γ-Al 2O 3-Cl bifunctional catalysts through an atomic scale geometrical model. NANOSCALE 2022; 14:8753-8765. [PMID: 35674285 DOI: 10.1039/d2nr00261b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantifying the distances between metallic sites and acid sites is crucial for tuning the catalytic activity and selectivity of bifunctional catalysts involving sub-nanometric platinum (Pt) nano-particles (NP) highly dispersed on a chlorinated alumina support. Thanks to the quantitative use of high resolution scanning transmission electron microscopy in the high angle annular dark field mode, we first highlight the presence of few Pt NP together with Pt single atoms (SA) on γ-alumina supports exhibiting various morphologies (flat-like or egg-like), and chlorine (Cl) and Pt loadings. We demonstrate that increasing the Pt loading does not impact the NP sizes but only the Pt NP inter-distances, whereas the Cl loading influences the SA/NP proportion. Then, we establish a thorough geometrical model which accounts for the way in which the global average metallic - acid inter-site distances evolve from 1 nm to 6 nm as a function of three key physico-chemical descriptors: alumina morphologies, chlorine contents and size factor of alumina particles (directly linked to specific surface area). Considering that Cl is predominantly located at alumina crystallite edges, the morphology strongly impacts the Cl edge saturation: 0.4% for flat-like, and 1.2% for egg-like alumina at fixed specific surface area (∼200 m2 g-1). At Cl edge saturation, the inter-site distance is found to be 3 nm for flat-like, and 1 nm for egg-like alumina. However, for fixed Cl loading, the inter-site distance is less discriminated by the morphology. We discuss these trends in the case of naphtha reforming catalysts and thanks to the as-obtained geometrical model, we identify the key alumina descriptors to tune the inter-site distance.
Collapse
Affiliation(s)
- Ana T F Batista
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| | - Fabrice Diehl
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| | - Anne-Lise Taleb
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| | - Anne-Sophie Gay
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess 67034 Strasbourg Cedex 2, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360 Solaize, France.
| |
Collapse
|
20
|
Chen Z, Liu J, Koh MJ, Loh KP. Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103882. [PMID: 34510576 DOI: 10.1002/adma.202103882] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
To date, the scope of single-atom catalysts (SAC) in liquid-phase transformations is rather limited owing to stability issues and the inability to activate complex substances. This calls for a better design of the catalyst support that can provide a dynamic coordination environment needed for catalytic action, and yet retain robustness against leaching or aggregation. In addition, the chemical orthogonality of SAC is useful for designing tandem or multicomponent reactions, in which side reactions common to metal nanoparticles are suppressed. In this review, the intrinsic mechanism will be highlighted that controls reaction efficiency and selectivity in SAC-catalyzed pathways, as well as the structural dynamism of SAC under complex liquid-phase conditions. These mechanistic insights are helpful for the development of next-generation SAC systems for the synthesis of high-value pharmaceuticals through late-stage functionalization, sequential and multicomponent strategies.
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jia Liu
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ming Joo Koh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
21
|
Guo J, Liu H, Li D, Wang J, Djitcheu X, He D, Zhang Q. A minireview on the synthesis of single atom catalysts. RSC Adv 2022; 12:9373-9394. [PMID: 35424892 PMCID: PMC8985184 DOI: 10.1039/d2ra00657j] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Single atom catalysis is a prosperous and rapidly growing research field, owing to the remarkable advantages of single atom catalysts (SACs), such as maximized atom utilization efficiency, tailorable catalytic activities as well as supremely high catalytic selectivity. Synthesis approaches play crucial roles in determining the properties and performance of SACs. Over the past few years, versatile methods have been adopted to synthesize SACs. Herein, we give a thorough and up-to-date review on the progress of approaches for the synthesis of SACs, outline the general principles and list the advantages and disadvantages of each synthesis approach, with the aim to give the readers a clear picture and inspire more studies to exploit novel approaches to synthesize SACs effectively.
Collapse
Affiliation(s)
- Jiawen Guo
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
22
|
Park J, Lee J. Effect of surface‐modified
nano‐aluminum
trihydroxide on electrical properties of silicone/
nano‐silica
nanocomposite. J Appl Polym Sci 2022. [DOI: 10.1002/app.51741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jae‐Jun Park
- Department of Electrical and Electronic Engineering Joongbu University Gyeonggi‐do South Korea
| | - Jae‐Young Lee
- Hydrogen Fuel Cell Parts and Applied Technology Regional Innovation Center Woosuk University Jeollabuk‐do South Korea
| |
Collapse
|
23
|
Liu C, Li T, Dai X, Zhao J, He D, Li G, Wang B, Cui X. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. J Am Chem Soc 2022; 144:4913-4924. [PMID: 35261231 DOI: 10.1021/jacs.1c12705] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further improve the intrinsic reactivity of single-atom catalysts (SACs), the controllable modification of a single site by coordinating with a second neighboring metal atom, developing double-atom catalysts (DACs), affords new opportunities. Here we report a catalyst that features two bonded Fe-Co double atoms, which is well represented by an FeCoN6(OH) ensemble with 100% metal dispersion, that work together to switch the reaction mechanism in alcohol dehydrogenation under oxidant-free conditions. Compared with Fe-SAC and Co-SAC, FeCo-DAC displays higher activity performance, yielding the desired products in up to 98% yields. Moreover, a broad diversity of benzyl alcohols and aliphatic alcohols convert into the corresponding dehydrogenated products with excellent yields and high selectivity. The kinetic reaction results show that lower activation energy is obtained by FeCo-DAC than that by Fe-SAC and Co-SAC. Moreover, computational studies demonstrate that the reaction path by DACs is different from that by SACs, providing a rationale for the observed enhancements.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Guomin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
24
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Ondar EE, Burykina JV, Ananikov VP. Evidence for the “cocktail” nature of platinum-catalyzed alkyne and alkene hydrosilylation reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence of the involvement of a “cocktail”-type catalytic system in the alkyne and alkene hydrosilylation reaction in the presence of platinum on a carbon support is reported.
Collapse
Affiliation(s)
- Evgeniia E. Ondar
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
26
|
Poovan F, Chandrashekhar V, Natte K, Rajenahally J. Synergy between homogeneous and heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis plays a decisive role in the advancement of sustainable processes in chemical, pharmaceutical, and agrochemical industries as well as petrochemical, material, and energy technologies. Notably, more than 80% of...
Collapse
|
27
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
|
29
|
Nagata T, Tanaka T, Lin X, Kondo R, Suzuki T, Kanda Y, Toyao T, Shimizu K, Obora Y. N,N
‐Dimethylformamide‐protected Fe
2
O
3
Combined with Pt Nanoparticles: Characterization and Catalysis in Alkene Hydrosilylation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tatsuki Nagata
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 564-8680 Suita Osaka Japan
| | - Tatsuya Tanaka
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 564-8680 Suita Osaka Japan
| | - Xianjin Lin
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 564-8680 Suita Osaka Japan
| | - Ryota Kondo
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 564-8680 Suita Osaka Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research) Osaka University 8-1 Mihogaoka 567-0057 Osaka Ibaraki Japan
| | - Yasuharu Kanda
- Graduate School of Engineering Muroran Institute of Technology 27-1 Mizumoto 050-8585 Muroran Hokkaido Japan
| | - Takashi Toyao
- Institute for Catalysis Hokkaido University N-21, W-10 001-0021 Sapporo Hokkaido Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 001-0021 Sapporo Hokkaido Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 564-8680 Suita Osaka Japan
| |
Collapse
|
30
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
31
|
Zhang H, Cai C, Hu T, Zhang Z, Dai L, Fei H, Bai H, Wu C, Gong X, Zheng X. Magnetically separable and efficient platinum catalyst: Amino ligand enhanced loading and Fe
2+
facilitated Pt
0
formation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haifeng Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Cheng Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Zhijie Zhang
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Lina Dai
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Huafeng Fei
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Hongli Bai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| |
Collapse
|
32
|
Sokolnicki T, Franczyk A, Janowski B, Walkowiak J. Synthesis of Bio‐Based Silane Coupling Agents by the Modification of Eugenol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tomasz Sokolnicki
- Center for Advanced Technology Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
- Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Adrian Franczyk
- Center for Advanced Technology Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | | | - Jędrzej Walkowiak
- Center for Advanced Technology Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| |
Collapse
|
33
|
Liu K, Badamdorj B, Yang F, Janik MJ, Antonietti M. Accelerated Anti‐Markovnikov Alkene Hydrosilylation with Humic‐Acid‐Supported Electron‐Deficient Platinum Single Atoms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kairui Liu
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Bolortuya Badamdorj
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Fan Yang
- School of Water Conservancy and Civil Engineering Northeast Agricultural University Harbin 150030 China
| | - Michael J. Janik
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802 USA
| | - Markus Antonietti
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| |
Collapse
|
34
|
Liu K, Badamdorj B, Yang F, Janik MJ, Antonietti M. Accelerated Anti-Markovnikov Alkene Hydrosilylation with Humic-Acid-Supported Electron-Deficient Platinum Single Atoms. Angew Chem Int Ed Engl 2021; 60:24220-24226. [PMID: 34473398 PMCID: PMC8597131 DOI: 10.1002/anie.202109689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Indexed: 11/09/2022]
Abstract
The hydrosilylation reaction is one of the largest-scale applications of homogeneous catalysis, and Pt homogeneous catalysts have been widely used in this reaction for the commercial manufacture of silicon products. However, homogeneous Pt catalysts result in considerable problems, such as undesired side reactions, unacceptable catalyst residues and disposable platinum consumption. Here, we synthesized electron-deficient Pt single atoms supported on humic matter (Pt1 @AHA_U_400), and the catalyst was used in hydrosilylation reactions, which showed super activity (turnover frequency as high as 3.0×107 h-1 ) and selectivity (>99 %). Density functional theory calculations reveal that the high performance of the catalyst results from the atomic dispersion of Pt and the electron deficiency of the Pt1 atoms, which is different from conventional Pt nanoscale catalysts. Excellent performance is maintained during recycle experiments, indicating the high stability of the catalyst.
Collapse
Affiliation(s)
- Kairui Liu
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Bolortuya Badamdorj
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| |
Collapse
|
35
|
Huo Y, Hu J, Liu F, Wu J, Zhang Y, Zhang Y, Wang Q. Platinum-Pyridine Schiff base complexes immobilized onto silica gel as efficient and low cost catalyst for hydrosilylation. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1871733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Feng Liu
- Shunde Polytechnic, Guangdong, China
| | - Jiapei Wu
- Shunde Polytechnic, Guangdong, China
| | | | | | | |
Collapse
|
36
|
Zhu T, Han Y, Liu S, Yuan B, Liu Y, Ma H. Porous Materials Confining Single Atoms for Catalysis. Front Chem 2021; 9:717201. [PMID: 34368087 PMCID: PMC8333616 DOI: 10.3389/fchem.2021.717201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) have received extensive attention due to their unique structure and excellent performance. Currently, a variety of porous materials are used as confined single-atom catalysts, such as zeolites, metal-organic frameworks (MOFs), or carbon nitride (CN). The support plays a key role in determining the coordination structure of the catalytic metal center and its catalytic performance. For example, the strong interaction between the metal and the carrier induces the charge transfer between the metal and the carrier, and ultimately affects the catalytic behavior of the single-atom catalyst. Porous materials have unique chemical and physical properties including high specific surface area, adjustable acidity and shape selectivity (such as zeolites), and are rational support materials for confined single atoms, which arouse research interest in this field. This review surveys the latest research progress of confined single-atom catalysts for porous materials, which mainly include zeolites, CN and MOFs. The preparation methods, characterizations, application fields, and the interaction between metal atoms and porous support materials of porous material confined single-atom catalysts are discussed. And we prospect for the application prospects and challenges of porous material confined single-atom catalysts.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Han
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Shuai Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Bo Yuan
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Yatao Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Hongli Ma
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| |
Collapse
|
37
|
Park J, Lee J. Effects of alkyl/vinyl‐modified nanosilicas on negative or positive high voltage direct current breakdown strength and tensile properties in silicone rubber nanocomposites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jae‐Jun Park
- Department of Electrical and Electronic Engineering Joongbu University South Korea
| | - Jae‐Young Lee
- Hydrogen Fuel Cell Parts and Applied Technology Regional Innovation Center Woosuk University Jeollabuk‐do South Korea
| |
Collapse
|
38
|
Singh B, Sharma V, Gaikwad RP, Fornasiero P, Zbořil R, Gawande MB. Single-Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006473. [PMID: 33624397 DOI: 10.1002/smll.202006473] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro, 3810-193, Portugal
| | - Vikas Sharma
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, India
| | - Rahul P Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, I-34127, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
39
|
de Almeida LD, Wang H, Junge K, Cui X, Beller M. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew Chem Int Ed Engl 2021; 60:550-565. [PMID: 32668079 PMCID: PMC7839722 DOI: 10.1002/anie.202008729] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/26/2022]
Abstract
Hydrosilylation reactions, which allow the addition of Si-H to C=C/C≡C bonds, are typically catalyzed by homogeneous noble metal catalysts (Pt, Rh, Ir, and Ru). Although excellent activity and selectivity can be obtained, the price, purification, and metal residues of these precious catalysts are problems in the silicone industry. Thus, a strong interest in more sustainable catalysts and for more economic processes exists. In this respect, recently disclosed hydrosilylations using catalysts based on earth-abundant transition metals, for example, Fe, Co, Ni, and Mn, and heterogeneous catalysts (supported nanoparticles and single-atom sites) are noteworthy. This minireview describes the recent advances in this field.
Collapse
Affiliation(s)
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesNo. 18, Tianshui Middle RoadLanzhou730000China
| | - Kathrin Junge
- Leibniz-Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesNo. 18, Tianshui Middle RoadLanzhou730000China
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
40
|
Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X, Shi F. The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02479a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, recent advances in the catalytic dehydrogenation of ethanol to acetaldehytde with the release of hydrogen catalyzed by a heterogeneous catalyst aresummerized and discussed.
Collapse
Affiliation(s)
- Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yubin Sun
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
41
|
Mon M, Leyva-Pérez A. Zeolites catalyze selective reactions of large organic molecules. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Almeida LD, Wang H, Junge K, Cui X, Beller M. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences No. 18, Tianshui Middle Road Lanzhou 730000 China
| | - Kathrin Junge
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences No. 18, Tianshui Middle Road Lanzhou 730000 China
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
43
|
Wang K, Wang X, Liang X. Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem 2020. [DOI: 10.1002/cctc.202001255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kaiying Wang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| | - Xiaofeng Wang
- College of Environmental Science and Engineering Dalian Maritime University Dalian 116026 P.R. China
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| |
Collapse
|
44
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
45
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
46
|
Rivero-Crespo M, Oliver-Meseguer J, Kapłońska K, Kuśtrowski P, Pardo E, Cerón-Carrasco JP, Leyva-Pérez A. Cyclic metal(oid) clusters control platinum-catalysed hydrosilylation reactions: from soluble to zeolite and MOF catalysts. Chem Sci 2020; 11:8113-8124. [PMID: 34123084 PMCID: PMC8163423 DOI: 10.1039/d0sc02391d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022] Open
Abstract
The Pt-catalysed addition of silanes to functional groups such as alkenes, alkynes, carbonyls and alcohols, i.e. the hydrosilylation reaction, is a fundamental transformation in industrial and academic chemistry, often claimed as the most important application of Pt catalysts in solution. However, the exact nature of the Pt active species and its mechanism of action is not well understood yet, particularly regarding regioselectivity. Here, experimental and computational studies together with an ad hoc graphical method show that the hydroaddition of alkynes proceeds through Pt-Si-H clusters of 3-5 atoms (metal(oid) association) in parts per million amounts (ppm), which decrease the energy of the transition state and direct the regioselectivity of the reaction. Based on these findings, new extremely-active (ppm) microporous solid catalysts for the hydrosilylation of alkynes, alkenes and alcohols have been developed, paving the way for more environmentally-benign industrial applications.
Collapse
Affiliation(s)
- Miguel Rivero-Crespo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| | - Judit Oliver-Meseguer
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| | - Klaudia Kapłońska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia 46980 Paterna Valencia Spain
| | | | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain +34963877809 +34963877800
| |
Collapse
|
47
|
Chen L, Ali IS, Tait SL. Bidentate N‐based Ligands for Highly Reusable, Ligand‐coordinated, Supported Pt Hydrosilylation Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Linxiao Chen
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Iyad S. Ali
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
| | - Steven L. Tait
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
| |
Collapse
|
48
|
Li T, Chen F, Lang R, Wang H, Su Y, Qiao B, Wang A, Zhang T. Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low‐Temperature Water–Gas Shift Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tianbo Li
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Chen
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Rui Lang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Hua Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yang Su
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Botao Qiao
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Aiqin Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
49
|
Li T, Chen F, Lang R, Wang H, Su Y, Qiao B, Wang A, Zhang T. Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low‐Temperature Water–Gas Shift Reaction. Angew Chem Int Ed Engl 2020; 59:7430-7434. [DOI: 10.1002/anie.202000998] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Tianbo Li
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Chen
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Rui Lang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Hua Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yang Su
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Botao Qiao
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Aiqin Wang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
50
|
Batista ATF, Baaziz W, Taleb AL, Chaniot J, Moreaud M, Legens C, Aguilar-Tapia A, Proux O, Hazemann JL, Diehl F, Chizallet C, Gay AS, Ersen O, Raybaud P. Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ana T. F. Batista
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Anne-Lise Taleb
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Johan Chaniot
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Université de Lyon, Université Jean Monnet de Saint-Etienne, CNRS UMR 5516, Laboratoire Hubert Curien, F-42000 Saint Etienne, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Centre for Mathematical Morphology, MINES ParisTech, 77305 Fontainebleau, France
| | - Christèle Legens
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | | | - Olivier Proux
- OSUG, UMS 832 CNRS-Université Grenoble Alpes, F-38041 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Fabrice Diehl
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Anne-Sophie Gay
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|