1
|
Zhang S, Leng W. Quantitative Determination the Role of the Intrabandgap States in Water Photooxidation over Hematite Electrodes. J Phys Chem Lett 2023; 14:9316-9323. [PMID: 37818854 DOI: 10.1021/acs.jpclett.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The intrabandgap states on the hematite (α-Fe2O3) electrodes are believed to play an important role in water photooxidation. Yet, it is not fully understood how the intrabandgap states are involved in the reaction. In this work, the intraband-gap states in water photooxidation on α-Fe2O3 electrodes are investigated by a combination of multiple (photo-) electrochemical techniques and operando spectroscopic methods. Two kinds of surface states are observed on the electrodes during water photooxidation, and their roles are quantitatively determined by the correlation with the steady-state photocurrent. It is demonstrated that the intrinsic electronic surface state close to the conduction band can act only as the recombination center for the photocarriers. However, the photogenerated surface state closer to the valence band is revealed to be the reactant in the rate-determining step in oxygen evolution reaction. These findings may be beneficial to elucidate the actual function of the surface states and provide insights into the kinetic and mechanism studies of water photooxidation on the α-Fe2O3 electrodes.
Collapse
Affiliation(s)
- Shufeng Zhang
- Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenhua Leng
- Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
2
|
Ma T, Easley AD, Thakur RM, Mohanty KT, Wang C, Lutkenhaus JL. Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility. Annu Rev Chem Biomol Eng 2023; 14:187-216. [PMID: 37289559 DOI: 10.1146/annurev-chembioeng-092220-111121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The storage of electric energy in a safe and environmentally friendly way is of ever-growing importance for a modern, technology-based society. With future pressures predicted for batteries that contain strategic metals, there is increasing interest in metal-free electrode materials. Among candidate materials, nonconjugated redox-active polymers (NC-RAPs) have advantages in terms of cost-effectiveness, good processability, unique electrochemical properties, and precise tuning for different battery chemistries. Here, we review the current state of the art regarding the mechanisms of redox kinetics, molecular design, synthesis, and application of NC-RAPs in electrochemical energy storage and conversion. Different redox chemistries are compared, including polyquinones, polyimides, polyketones, sulfur-containing polymers, radical-containing polymers, polyphenylamines, polyphenazines, polyphenothiazines, polyphenoxazines, and polyviologens. We close with cell design principles considering electrolyte optimization and cell configuration. Finally, we point to fundamental and applied areas of future promise for designer NC-RAPs.
Collapse
Affiliation(s)
- Ting Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Alexandra D Easley
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Ratul Mitra Thakur
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Khirabdhi T Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Chen Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA;
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Park J, Yoon KY, Kwak MJ, Kang J, Kim S, Chaule S, Ha SJ, Jang JH. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) x Co-Catalyzed Hematite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9341-9349. [PMID: 36749965 DOI: 10.1021/acsami.2c20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC. The 0D NFMX was fabricated from two-dimensional (2D) MXene sheets and deposited onto the surface of a three-dimensional (3D) hematite photoanode via a centrifuge-assisted method without altering the inherent performance of the 2D MXene sheets. Among many OECs, NiFe(OH)x was selected as the OEC to improve hematite PEC performance in our system because of its efficient charge transport behavior and high stability. Because of the great synergy between NFMX and NiFe(OH)x, NiFe(OH)x/NFMX/Fe2O3 achieved a maximum photocurrent density of 3.09 mA cm-2 at 1.23 VRHE, which is 2.78-fold higher than that of α-Fe2O3 (1.11 mA cm-2). Furthermore, the poor stability of MXene in an aqueous solution for water splitting was resolved by uniformly coating it with NiFe(OH)x, after which it showed outstanding stability for 60 h at 1.23 VRHE. This study demonstrates the successful use of NFMX as a hole transport material combined with an OEC for highly efficient water splitting.
Collapse
Affiliation(s)
- Juhyung Park
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ki-Yong Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Jihun Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Suhee Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Sourav Chaule
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
5
|
Berardi S, Cristino V, Bignozzi CA, Grandi S, Caramori S. Hematite-based photoelectrochemical interfaces for solar fuel production. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Chai H, Wang S, Wang X, Ma J, Jin J. Modulation of the Chemical Microenvironment at the Hematite-Based Photoanode Interface with a Covalent Triazine Framework for Efficient Photoelectrochemical Water Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Shuoshuo Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
7
|
Determination of photon-driven charge transfer efficiency: Drawbacks, accuracy and precision of different methods using Hematite as case of study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nie W, Wang X, Wang Z, Gao Y, Chen R, Liu Y, Li C, Fan F. Identifying the Role of the Local Charge Density on the Hydrogen Evolution Reaction of the Photoelectrode. J Phys Chem Lett 2021; 12:10829-10836. [PMID: 34726399 DOI: 10.1021/acs.jpclett.1c03127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the role of surface charges in the catalytic reaction is of great importance to fundamental science in photoelectrochemistry (PEC). However, spatial heterogeneities of charge transfer sites and catalytic sites at the electrode/electrolyte interface obscures the surface reaction process. Herein, we quantified the relationship between the local catalytic current of the hydrogen evolution reaction (HER) and the surface charge density using operando spatially resolved photovoltage microscopy on the Pt/Ti array on the p-Si photoelectrode. We found that the Pt/Ti islands on the p-Si surface worked as the main charge collect areas but as the sole catalytic sites to drive the PEC hydrogen evolution. Based on the achievements of identifying the local photocurrent and photovoltage on a single Pt/Ti island, we found that the local HER current can be linearly regulated by the charge density at reactive sites by concurrently adjusting the bias potential and the spacings of the Pt/Ti islands. These results emphasize the significant impact of the surface charge density on the catalytic activity in photoelectrochemistry.
Collapse
Affiliation(s)
- Wei Nie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
9
|
Nie W, Zhu Q, Gao Y, Wang Z, Liu Y, Wang X, Chen R, Fan F, Li C. Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism. NANO LETTERS 2021; 21:8901-8909. [PMID: 34647747 DOI: 10.1021/acs.nanolett.1c03529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.
Collapse
Affiliation(s)
- Wei Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xun Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
10
|
Ismail ASM, Garcia-Torregrosa I, Vollenbroek JC, Folkertsma L, Bomer JG, Haarman T, Ghiasi M, Schellhorn M, Nachtegaal M, Odijk M, van den Berg A, Weckhuysen BM, de Groot FMF. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed S. M. Ismail
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ivan Garcia-Torregrosa
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
- TNO Energy Transition, 1755 LE Petten, The Netherlands
| | - Jeroen C. Vollenbroek
- BIOS Lab on a Chip Group, MESA+ Institute of Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | | | - Johan G. Bomer
- BIOS Lab on a Chip Group, MESA+ Institute of Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Ties Haarman
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mahnaz Ghiasi
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Meike Schellhorn
- Optics/Short Wavelengths Department, Laser-Laboratorium Göttingen e.V., 37077 Göttingen, Germany
| | | | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute of Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute of Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Frank M. F. de Groot
- Inorganic Chemistry and Catalysis Group, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Li J, Chen H, Triana CA, Patzke GR. Hematite Photoanodes for Water Oxidation: Electronic Transitions, Carrier Dynamics, and Surface Energetics. Angew Chem Int Ed Engl 2021; 60:18380-18396. [PMID: 33761172 DOI: 10.1002/anie.202101783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/08/2022]
Abstract
We review the current understanding of charge carriers in model hematite photoanodes at different stages. The origin of charge carriers is discussed based on the electronic structure and absorption features, highlighting the controversial assignment of the electronic transitions near the absorption edge. Next, the dynamic evolution of charge carriers is analyzed both on the ultrafast and on the surface reaction timescales, with special emphasis on the arguable spectroscopic assignment of electrons/holes and their kinetics. Further, the competitive charge transfer centers at the solid-liquid interface are reviewed, and the chemical nature of relevant surface states is updated. Finally, an overview on the function of widely employed surface cocatalysts is given to illustrate the complex influence of physiochemical modifications on the charge carrier dynamics. The understanding of charge carriers from their origin all the way to their interfacial transfer is vital for the future of photoanode design.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
12
|
Li J, Chen H, Triana CA, Patzke GR. Hematite Photoanodes for Water Oxidation: Electronic Transitions, Carrier Dynamics, and Surface Energetics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingguo Li
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Hang Chen
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Carlos A. Triana
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Greta R. Patzke
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
13
|
Shadabipour P, Raithel AL, Hamann TW. Charge-Carrier Dynamics at the CuWO 4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50592-50599. [PMID: 33119249 DOI: 10.1021/acsami.0c14705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unraveling the charge-carrier dynamics at electrocatalyst/electrode interfaces is critical for the development of efficient photoelectrochemical (PEC) water oxidation. Unlike the majority of photoanodes investigated for PEC water oxidation, the integration of electrocatalysts with CuWO4 electrodes generally results in comparable or worse performance compared to the bare electrode. This is despite the fact that the surface state recombination limits the water oxidation efficiency with CuWO4 electrodes, and an electrocatalyst ought to bypass this reaction and improve performance. Here, we present results that deepen the understanding of the energetics and electron-transfer processes at the CuWO4/electrocatalyst interface, which controls the performance of such systems. Ni0.75Fe0.25Oy (denoted as Ni75) was chosen as a model electrocatalyst, and through dual-working electrode experiments, we have been able to provide significant insight into the role of the electrocatalyst on the charge-transfer process at the CuWO4/Ni75 interface. We have shown a lack of performance improvement for CuWO4/Ni75 relative to the bare electrode to water oxidation. We attribute this surprising result to water oxidation on the CuWO4 surface kinetically outcompeting hole transfer to the Ni75 electrocatalyst interface.
Collapse
Affiliation(s)
- Parisa Shadabipour
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Austin L Raithel
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
14
|
Tsyganok A, Ghigna P, Minguzzi A, Naldoni A, Murzin V, Caliebe W, Rothschild A, Ellis DS. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe 2O 3) Photoanodes for Solar Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11564-11572. [PMID: 32900201 PMCID: PMC7586389 DOI: 10.1021/acs.langmuir.0c02065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/08/2020] [Indexed: 06/11/2023]
Abstract
An FeNi (oxy)hydroxide cocatalyst overlayer was photoelectrochemically deposited on a thin-film hematite (α-Fe2O3) photoanode, leading to a cathodic shift of ∼100 mV in the photocurrent onset potential. Operando X-ray absorption spectroscopy (XAS) at the Fe and Ni K-edges was used to study the changes in the overlayer with potential in the dark and under illumination conditions. Potential or illumination only had a minor effect on the Fe oxidation state, suggesting that Fe atoms do not accumulate significant amount of charge over the whole potential range. In contrast, the Ni K-edge spectra showed pronounced dependence on potential in the dark and under illumination. The effect of illumination is to shift the onset for the Ni oxidation because of the generated photovoltage and suggests that holes that are photogenerated in hematite are transferred mainly to the Ni atoms in the overlayer. The increase in the oxidation state of Ni proceeds at potentials corresponding to the redox wave of Ni, which occurs immediately prior to the onset of the oxygen evolution reaction (OER). Linear combination fitting analysis of the obtained spectra suggests that the overlayer does not have to be fully oxidized to promote oxygen evolution. Cathodic discharge measurements show that the photogenerated charge is stored almost exclusively in the Ni atoms within the volume of the overlayer.
Collapse
Affiliation(s)
- Anton Tsyganok
- Department
of Materials Science and Engineering, Technion—-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Paolo Ghigna
- Dipartimento
di Chimica, Università di Pavia,
and Unità INSTM di Pavia, V.le Taramelli 16, I2700 Pavia, Italy
| | - Alessandro Minguzzi
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Alberto Naldoni
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Vadim Murzin
- Deutsches
Elektonen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany
- Bergische
Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Wolfgang Caliebe
- Deutsches
Elektonen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Avner Rothschild
- Department
of Materials Science and Engineering, Technion—-Israel
Institute of Technology, Haifa 3200003, Israel
| | - David S. Ellis
- Department
of Materials Science and Engineering, Technion—-Israel
Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Zhang H, Li D, Byun WJ, Wang X, Shin TJ, Jeong HY, Han H, Li C, Lee JS. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat Commun 2020; 11:4622. [PMID: 32934221 PMCID: PMC7493915 DOI: 10.1038/s41467-020-18484-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Hematite has a great potential as a photoanode for photoelectrochemical (PEC) water splitting by converting solar energy into hydrogen fuels, but the solar-to-hydrogen conversion efficiency of state-of-the-art hematite photoelectrodes are still far below the values required for practical hydrogen production. Here, we report a core-shell formation of gradient tantalum-doped hematite homojunction nanorods by combination of hydrothermal regrowth strategy and hybrid microwave annealing, which enhances the photocurrent density and reduces the turn-on voltage simultaneously. The unusual bi-functional effects originate from the passivation of the surface states and intrinsic built-in electric field by the homojunction formation. The additional driving force provided by the field can effectively suppress charge–carrier recombination both in the bulk and on the surface of hematite, especially at lower potentials. Moreover, the synthesized homojunction shows a remarkable synergy with NiFe(OH)x cocatalyst with significant additional improvements of photocurrent density and cathodic shift of turn-on voltage. The work has nicely demonstrated multiple collaborative strategies of gradient doping, homojunction formation, and cocatalyst modification, and the concept could shed light on designing and constructing the efficient nanostructures of semiconductor photoelectrodes in the field of solar energy conversion. Solar-to-fuel conversion represents a renewable means to harvest sunlight, but the most efficient materials are often expensive or rare. Here, authors demonstrate gradient tantalum-doped hematite homojunctions as a method to improve photoelectrochemical water splitting performances.
Collapse
Affiliation(s)
- Hemin Zhang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, 116023, Dalian, China
| | - Woo Jin Byun
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, 116023, Dalian, China.
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea.
| | - Hongxian Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, 116023, Dalian, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, 116023, Dalian, China
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
16
|
Malara F, Fracchia M, Kmentová H, Psaro R, Vertova A, Oliveira de Souza D, Aquilanti G, Olivi L, Ghigna P, Minguzzi A, Naldoni A. Direct Observation of Photoinduced Higher Oxidation States at a Semiconductor/Electrocatalyst Junction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Francesco Malara
- CNR-Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milan, Italy
| | - Martina Fracchia
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 13, I-27100 Pavia, Italy
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Rinaldo Psaro
- CNR-Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milan, Italy
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | | | - Giuliana Aquilanti
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Luca Olivi
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 13, I-27100 Pavia, Italy
- INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Alessandro Minguzzi
- INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Alberto Naldoni
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
17
|
Yu W, Fu HJ, Mueller T, Brunschwig BS, Lewis NS. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research. J Chem Phys 2020; 153:020902. [PMID: 32668946 DOI: 10.1063/5.0009858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrated photoelectrochemical devices rely on the synergy between components to efficiently generate sustainable fuels from sunlight. The micro- and/or nanoscale characteristics of the components and their interfaces often control critical processes of the device, such as charge-carrier generation, electron and ion transport, surface potentials, and electrocatalysis. Understanding the spatial properties and structure-property relationships of these components can provide insight into designing scalable and efficient solar fuel components and systems. These processes can be probed ex situ or in situ with nanometer-scale spatial resolution using emerging scanning-probe techniques based on atomic force microscopy (AFM). In this Perspective, we summarize recent developments of AFM-based techniques relevant to solar fuel research. We review recent progress in AFM for (1) steady-state and dynamic light-induced surface photovoltage measurements; (2) nanoelectrical conductive measurements to resolve charge-carrier heterogeneity and junction energetics; (3) operando investigations of morphological changes, as well as surface electrochemical potentials, currents, and photovoltages in liquids. Opportunities for research include: (1) control of ambient conditions for performing AFM measurements; (2) in situ visualization of corrosion and morphological evolution of electrodes; (3) operando AFM techniques to allow nanoscale mapping of local catalytic activities and photo-induced currents and potentials.
Collapse
Affiliation(s)
- Weilai Yu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Harold J Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas Mueller
- Bruker Nano Surfaces, 112 Robin Hill Road, Santa Barbara, California 93111, USA
| | - Bruce S Brunschwig
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Nathan S Lewis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
18
|
Xiao C, Zhou Z, Li L, Wu S, Li X. Tin and Oxygen-Vacancy Co-doping into Hematite Photoanode for Improved Photoelectrochemical Performances. NANOSCALE RESEARCH LETTERS 2020; 15:54. [PMID: 32130553 PMCID: PMC7056762 DOI: 10.1186/s11671-020-3287-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/21/2020] [Indexed: 05/17/2023]
Abstract
Hematite (α-Fe2O3) material is regarded as a promising candidate for solar-driven water splitting because of the low cost, chemical stability, and appropriate bandgap; however, the corresponding system performances are limited by the poor electrical conductivity, short diffusion length of minority carrier, and sluggish oxygen evolution reaction. Here, we introduce the in situ Sn doping into the nanoworm-like α-Fe2O3 film with ultrasonic spray pyrolysis method. We show that the current density at 1.23 V vs. RHE (Jph@1.23V) under one-sun illumination can be improved from 10 to 130 μA/cm2 after optimizing the Sn dopant density. Moreover, Jph@1.23V can be further enhanced 25-folds compared to the untreated counterpart via the post-rapid thermal process (RTP), which is used to introduce the defect doping of oxygen vacancy. Photoelectrochemical impedance spectrum and Mott-Schottky analysis indicate that the performance improvement can be ascribed to the increased carrier density and the decreased resistances for the charge trapping on the surface states and the surface charge transferring into the electrolyte. X-ray photoelectron spectrum and X-ray diffraction confirm the existence of Sn and oxygen vacancy, and the potential influences of varying levels of Sn doping and oxygen vacancy are discussed. Our work points out one universal approach to efficiently improve the photoelectrochemical performances of the metal oxide semiconductors.
Collapse
Affiliation(s)
- Chenhong Xiao
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, Jiangsu, China
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhongyuan Zhou
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, Jiangsu, China
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Liujing Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, Jiangsu, China
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Shaolong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, Jiangsu, China.
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, Jiangsu, China.
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
19
|
Shadabipour P, Hamann TW. Interface passivation to overcome shunting in semiconductor-catalyst junctions. Chem Commun (Camb) 2020; 56:2570-2573. [PMID: 32010903 DOI: 10.1039/c9cc09597g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance mesoporous hematite photoanodes modified with a conductive water oxidation catalyst, Ni0.75Fe0.25OxHy, for photoelectrochemical water oxidation are limited by shunting. We present a general method to overcome shunting via the selective electrodeposition of a thin poly(phenylene oxide) (PPO) insulating layer onto the exposed transparent conductive oxide substrate following catalyst deposition.
Collapse
Affiliation(s)
- Parisa Shadabipour
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, USA.
| | | |
Collapse
|
20
|
Orlandi M, Berardi S, Mazzi A, Caramori S, Boaretto R, Nart F, Bignozzi CA, Bazzanella N, Patel N, Miotello A. Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel-Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48002-48012. [PMID: 31797662 DOI: 10.1021/acsami.9b19790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water oxidation represents the anodic reaction in most of the photoelectrosynthetic setups for artificial photosynthesis developed so far. The efficiency of the overall process strongly depends on the joint exploitation of good absorber domains and interfaces with minimized recombination pathways. To this end, we report on the effective coupling of thin-layer hematite with amorphous porous nickel-iron oxide catalysts prepared via pulsed laser deposition. The rational design of such composite photoelectrodes leads to the formation of a functional adaptive junction, with enhanced photoanodic properties with respect to bare hematite. Electrochemical impedance spectroscopy has contributed to shed light on the mechanisms of photocurrent generation, confirming the reduction of recombination pathways as the main contributor to the improved performances of the functionalized photoelectrodes. Our results highlight the importance of the amorphous catalysts' morphology, as dense and electrolyte impermeable layers hinder the pivotal charge compensation processes at the interface. The direct comparison with all-iron and all-nickel catalytic counterparts further confirms that control over the kinetics of both hole transfer and charge recombination, enabled by the adaptive junction, is key for the optimal operation of this kind of semiconductor/catalyst interfaces.
Collapse
Affiliation(s)
- Michele Orlandi
- Department of Physics , University of Trento , Via Sommarive 14 , Povo , Trento I-38123 , Italy
| | - Serena Berardi
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Via Fossato di Mortara 17-19 , Ferrara 44100 , Italy
| | - Alberto Mazzi
- Department of Physics , University of Trento , Via Sommarive 14 , Povo , Trento I-38123 , Italy
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Via Fossato di Mortara 17-19 , Ferrara 44100 , Italy
| | - Rita Boaretto
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Via Fossato di Mortara 17-19 , Ferrara 44100 , Italy
| | - Francesco Nart
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Via Fossato di Mortara 17-19 , Ferrara 44100 , Italy
| | - Carlo A Bignozzi
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Via Fossato di Mortara 17-19 , Ferrara 44100 , Italy
| | - Nicola Bazzanella
- Department of Physics , University of Trento , Via Sommarive 14 , Povo , Trento I-38123 , Italy
| | - Nainesh Patel
- Department of Physics , University of Mumbai , Vidyanagari, Santacruz (E) , Mumbai 400 098 , India
| | - Antonio Miotello
- Department of Physics , University of Trento , Via Sommarive 14 , Povo , Trento I-38123 , Italy
| |
Collapse
|
21
|
Abstract
Photoelectrochemical (PEC) water splitting has been intensively studied in the past decades as a promising method for large-scale solar energy storage. Among the various issues that limit the progress of this field, the lack of photoelectrode materials with suitable properties in all aspects of light absorption, charge separation and transport, and charge transfer is a key challenge, which has attracted tremendous research attention. A large variety of compositions, in different forms, have been tested. This review aims to summarize efforts in this area, with a focus on materials-related considerations. Issues discussed by this review include synthesis, optoelectronic properties, charge behaviors and catalysis. In the recognition that thin-film materials are representative model systems for the study of these issues, we elected to focus on this form, so as to provide a concise and coherent account on the different strategies that have been proposed and tested. Because practical implementation is of paramount importance to the eventual realization of using solar fuel for solar energy storage, we pay particular attention to strategies proposed to address the stability and catalytic issues, which are two key factors limiting the implementation of efficient photoelectrode materials. To keep the overall discussion focused, all discussions were presented within the context of water splitting reactions. How the thin-film systems may be applied for fundamental studies of the water splitting chemical mechanisms and how to use the model system to test device engineering design strategies are discussed.
Collapse
Affiliation(s)
- Yumin He
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, Massachusetts 02467, USA.
| | | | | |
Collapse
|
22
|
Lin H, Long X, An Y, Zhou D, Yang S. Three-Dimensional Decoupling Co-Catalyst from a Photoabsorbing Semiconductor as a New Strategy To Boost Photoelectrochemical Water Splitting. NANO LETTERS 2019; 19:455-460. [PMID: 30547599 DOI: 10.1021/acs.nanolett.8b04278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A cocatalyst is normally deposited on a photoabsorbing semiconductor (PAS) for photoelectrochemical (PEC) water splitting, but with drawbacks of limited loading, reduced light absorption, and tendency of charge recombination. To tackle these problems, a scheme of three-dimensional (3D) decoupling cocatalysts from the PAS with a pore-spanning crisscross conducting polymer host is proposed in this work. To demonstrate the concept, a facile method was developed for the in situ cogrowth of FeO x nanoparticles and conducting polymer (CP) network in various PAS with different microstructures such as a TiO2 nanorod array, WO3 nanosheet array, and planar TiO2 nanoparticle film, generating the bespoke photoanodes. The as-synthesized photoanodes exhibited a significantly enhanced PEC water splitting performance, which is clearly shown to arise from the improved light utilization, increased catalytic active sites, enhanced charge separation, and decreased electrochemical impedance of the photoelectrode. This 3D decoupling strategy is expected to open a promising direction for designing efficient PEC cells.
Collapse
Affiliation(s)
- He Lin
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Xia Long
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yiming An
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Dan Zhou
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
23
|
Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev 2019; 48:4979-5015. [DOI: 10.1039/c8cs00997j] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we survey recent strategies for photoelectrode optimization and advanced characterization methods towards efficient water splitting cells via feedback from these characterization methods.
Collapse
Affiliation(s)
- Wooseok Yang
- Department of Materials Science and Engineering
- Yonsei University
- 03722 Seoul
- Republic of Korea
| | | | - Jeiwan Tan
- Department of Materials Science and Engineering
- Yonsei University
- 03722 Seoul
- Republic of Korea
| | - S. David Tilley
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Jooho Moon
- Department of Materials Science and Engineering
- Yonsei University
- 03722 Seoul
- Republic of Korea
| |
Collapse
|
24
|
Laskowski FAL, Nellist MR, Qiu J, Boettcher SW. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. J Am Chem Soc 2018; 141:1394-1405. [PMID: 30537811 DOI: 10.1021/jacs.8b09449] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Solar water splitting provides a mechanism to convert and store solar energy in the form of stable chemical bonds. Water-splitting systems often include semiconductor photoanodes, such as n-Fe2O3 and n-BiVO4, which use photogenerated holes to oxidize water. These photoanodes often exhibit improved performance when coated with metal-oxide/(oxy)hydroxide overlayers that are catalytic for the water-oxidation reaction. The mechanism for this improvement, however, remains a controversial topic. This is, in part, due to a lack of experimental techniques that are able to directly track the flow of photogenerated holes in such multicomponent systems. In this Perspective, we illustrate how this issue can be addressed by using a second working electrode to make direct current/voltage measurements on the catalytic overlayer during operation in a photoelectrochemical cell. We discuss examples where the second working electrode is a thin metallic film deposited on the catalyst layer, as well as where it is the tip of a conducting atomic-force-microscopy probe. In applying these techniques to multiple semiconductors (Fe2O3, BiVO4, Si) paired with various metal-(oxy)hydroxide overlayers (e.g., Ni(Fe)O xH y and CoO xH y), we found in all cases investigated that the overlayers collect photogenerated holes from the semiconductor, charging to potentials sufficient to drive water oxidation. The overlayers studied thus form charge-separating heterojunctions with the semiconductor as well as serve as water-oxidation catalysts.
Collapse
Affiliation(s)
- Forrest A L Laskowski
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael R Nellist
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Jingjing Qiu
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
25
|
Sharma P, Jang J, Lee JS. Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe2O3Photoanode. ChemCatChem 2018. [DOI: 10.1002/cctc.201801187] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pankaj Sharma
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ji‐Wook Jang
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jae Sung Lee
- Department of Energy Engineering School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
26
|
Deng J, Zhang Q, Feng K, Lan H, Zhong J, Chaker M, Ma D. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts. CHEMSUSCHEM 2018; 11:3783-3789. [PMID: 30215886 DOI: 10.1002/cssc.201801751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/09/2018] [Indexed: 06/08/2023]
Abstract
An effective cocatalyst is usually required to improve the performance of photoelectrochemical (PEC) water splitting catalysts. A fluorine-doped FeOOH (F:FeOOH) cocatalyst on a hematite photoanode was used to lower the onset potential by 140 mV and significantly improve the PEC performance. Moreover, a more effective dual cocatalytic system was prepared by subsequent loading of a FeNiOOH cocatalyst, which resulted in a further decrease of the onset potential by 270 mV. The final onset potential of the Fe2 O3 /F:FeOOH/FeNiOOH photoanode was lowered to 0.45 V versus the reversible hydrogen electrode (RHE), which is one of the lowest onset potential values ever reported for hematite photoanodes. The photocurrent also dramatically increased by a factor of approximately 3 to 0.9 mA cm-2 at 1.0 V versus RHE. Based on the structural, chemical, and electrochemical impedance spectroscopy characterization, the enhanced performance was attributed to the F:FeOOH overlayer, which reduced the surface recombination and accelerated the oxygen evolution reaction activity, and the FeNiOOH cocatalyst, which further enhanced the reaction kinetics. The facile preparation of the F:FeOOH cocatalyst and the design of the dual cocatalytic system will allow the development of high-performance hematite photoanodes.
Collapse
Affiliation(s)
- Jiujun Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China
- Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec, J3X 1S2, Canada
| | - Qingzhe Zhang
- Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec, J3X 1S2, Canada
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Huiwen Lan
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Mohamed Chaker
- Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec, J3X 1S2, Canada
| | - Dongling Ma
- Institut National de la Recherche Scientifique (INRS), Université du Québec, Varennes, Québec, J3X 1S2, Canada
| |
Collapse
|
27
|
Avital YY, Dotan H, Klotz D, Grave DA, Tsyganok A, Gupta B, Kolusheva S, Visoly-Fisher I, Rothschild A, Yochelis A. Two-site H 2O 2 photo-oxidation on haematite photoanodes. Nat Commun 2018; 9:4060. [PMID: 30301897 PMCID: PMC6177486 DOI: 10.1038/s41467-018-06141-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022] Open
Abstract
H2O2 is a sacrificial reductant that is often used as a hole scavenger to gain insight into photoanode properties. Here we show a distinct mechanism of H2O2 photo-oxidation on haematite (α-Fe2O3) photoanodes. We found that the photocurrent voltammograms display non-monotonous behaviour upon varying the H2O2 concentration, which is not in accord with a linear surface reaction mechanism that involves a single reaction site as in Eley-Rideal reactions. We postulate a nonlinear kinetic mechanism that involves concerted interaction between adions induced by H2O2 deprotonation in the alkaline solution with adjacent intermediate species of the water photo-oxidation reaction, thereby involving two reaction sites as in Langmuir-Hinshelwood reactions. The devised kinetic model reproduces our main observations and predicts coexistence of two surface reaction paths (bi-stability) in a certain range of potentials and H2O2 concentrations. This prediction is confirmed experimentally by observing a hysteresis loop in the photocurrent voltammogram measured in the predicted coexistence range.
Collapse
Affiliation(s)
- Yotam Y Avital
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Hen Dotan
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Dino Klotz
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Daniel A Grave
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Anton Tsyganok
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Bhavana Gupta
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Sofia Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Iris Visoly-Fisher
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Avner Rothschild
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Arik Yochelis
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel.
- Department of Physics, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
| |
Collapse
|
28
|
Kaledin AL, Hill CL, Lian T, Musaev DG. A bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles. J Comput Chem 2018; 40:212-221. [PMID: 30284306 DOI: 10.1002/jcc.25373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/11/2022]
Abstract
We describe a bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles. In this method, we apply a many-body scaling function (in similar manner as in the environment-modified total energy based tight-binding method) to the DFT-derived diatomic AO interaction potentials (like in the conventional orbital-based density-functional tight binding approach) strictly according to atomic valences acquired naturally in a bulk structure. This modification, (a) facilitates all atom orbital-based electronic structure calculations of charge carrier dynamics in nanoscale structures with a molecular acceptor, and (b) allows to closely match high-level density functional calculation data (previously adjusted to the available experimental findings) for bulk structures. To advance practical application of the BA-LCAO approach we parameterize the Hamiltonian of wurtzite CdSe by fitting its band structure to a high-level DFT reference, corrected for experimentally measured band edges. Here, unlike in conventional DFTB approach, we: (1) use hydrogen-like AOs for the basis as exact atomic eigenfunctions, while orbital energies of which are taken from experimentally measured ionization potentials, and (2) parameterize the many-body scaling functions rather than the atomic wavefunctions. Development of this approach and parameters is guided by our goals to devise a method capable of simultaneously treating the problems of (i) interfacial electron/hole transfer between finite, variable size nanoparticles and electron scavenging molecules, and (ii) high-energy electronic transitions (Auger transitions) that mediate multi-exciton decay in quantum dots. Electronic structure results are described for CdSe quantum dots of various sizes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexey L Kaledin
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, 30322, Georgia
| | - Craig L Hill
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, 30322, Georgia
| | - Tianquan Lian
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, 30322, Georgia
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, 30322, Georgia
| |
Collapse
|
29
|
Grave DA, Yatom N, Ellis DS, Toroker MC, Rothschild A. The "Rust" Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706577. [PMID: 29504160 DOI: 10.1002/adma.201706577] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/31/2017] [Indexed: 06/08/2023]
Abstract
In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics.
Collapse
Affiliation(s)
- Daniel A Grave
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Natav Yatom
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - David S Ellis
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maytal Caspary Toroker
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Avner Rothschild
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
30
|
Tsyganok A, Klotz D, Malviya KD, Rothschild A, Grave DA. Different Roles of Fe1–xNixOOH Cocatalyst on Hematite (α-Fe2O3) Photoanodes with Different Dopants. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04386] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anton Tsyganok
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Dino Klotz
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Kirtiman Deo Malviya
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Avner Rothschild
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Daniel A. Grave
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Xu Z, Wang H, Wen Y, Li W, Sun C, He Y, Shi Z, Pei L, Chen Y, Yan S, Zou Z. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3624-3633. [PMID: 29308871 DOI: 10.1021/acsami.7b17348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For photoelectrochemical (PEC) water splitting, the interface interactions among semiconductors, electrocatalysts, and electrolytes affect the charge separation and catalysis in turn. Here, through the changing of the bath temperature, Co-based oxygen evolution catalysts (OEC) with different crystallinities were electrochemically deposited on Ti-doped Fe2O3 (Ti-Fe2O3) photoanodes. We found: (1) the OEC with low crystallinity is highly ion-permeable, decreasing the interactions between OEC and photoanode due to the intimate interaction between semiconductor and electrolyte; (2) the OEC with high crystallinity is nearly ion-impermeable, is beneficial to form a constant buried junction with semiconductor, and exhibits the low OEC catalytic activity; and (3) the OEC with moderate crystallinity is partially electrolyte-screened, thus contributing to the formation of ideal band bending underneath surface of semiconductor for charge separation and the highly electrocatalytic activity of OEC for lowering over-potentials of water oxidation. Our results demonstrate that to balance the water oxidation activity of OEC and OEC-semiconductor interface energetics is crucial for highly efficient solar energy conversion; in particular, the energy transducer is a semiconductor with a shallow or moderate valence-band level.
Collapse
Affiliation(s)
| | | | - Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai 200438, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|