1
|
Zheng W, Ye S, Liu B, Liu D, Yan R, Guo H, Yu H, Hu X, Zhao H, Zhou K, Li G. Crosstalk between GBP2 and M2 macrophage promotes the ccRCC progression. Cancer Sci 2024; 115:3570-3586. [PMID: 39222374 PMCID: PMC11531969 DOI: 10.1111/cas.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a highly heterogeneous kidney malignancy associated with the poorest prognosis. The metastatic potential of advanced ccRCC tumors is notably high, posing significant clinical challenges. There is an urgent imperative to develop novel therapeutic approaches to address ccRCC metastasis. Recent investigations indicated a potential association between GBP2 and tumor immunity. However, the precise functional role of GBP2 in the progression of ccRCC remains poorly understood. The present study revealed a strong correlation between GBP2 and M2 macrophages. Specifically, our findings demonstrated that the inhibition of GBP2 significantly impedes the migratory and invasive capabilities of ccRCC cells. We observed that the presence of M2 macrophages can reverse the effects of GBP2 knockdown on tumor cell migration and invasion. Mechanistically, we demonstrated that M2 macrophages promote the expression of the GBP2/p-STAT3 and p-ERK axis in tumor cells through the secretion of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), thereby substantially enhancing the migratory and invasive capacities of the tumor cells. Simultaneously, we have identified that GBP2 promotes the polarization of macrophages to the M2 phenotype by stimulating the secretion of interleukin-18 (IL-18). In summary, our investigation anticipates that the GBP2/IL-18/M2 macrophages/IL-10 and the TGF-β/GBP2, p-STAT3, p-ERK loop plays a crucial role in ccRCC metastasis. The collective findings from our research underscore the significant role of GBP2 in tumor immunity and emphasize the potential for modulating GBP2 as a promising therapeutic strategy for targeting ccRCC metastasis.
Collapse
Affiliation(s)
- Wei Zheng
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
| | - Shujiang Ye
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
| | - Bin Liu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
| | - Dan Liu
- Cancer Metabolism Laboratory, School of Life SciencesAnhui Medical UniversityHefeiChina
| | - Ruyu Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Hongjuan Guo
- Cancer Metabolism Laboratory, School of Life SciencesAnhui Medical UniversityHefeiChina
| | - Hongtao Yu
- Cancer Metabolism Laboratory, School of Life SciencesAnhui Medical UniversityHefeiChina
| | - Xudong Hu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
| | - Huaiming Zhao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
| | - Kecheng Zhou
- Cancer Metabolism Laboratory, School of Life SciencesAnhui Medical UniversityHefeiChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Guangyuan Li
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Anhui Public Health Clinical CenterHefeiChina
- The Lu’an Hospital Affiliated to Anhui Medical UniversityLu’anChina
- The Lu’an People's HospitalLu’anChina
| |
Collapse
|
2
|
Yan R, Liu D, Guo H, Liu M, Lv D, Björkblom B, Wu M, Yu H, Leng H, Lu B, Li Y, Gao M, Blom T, Zhou K. LAPTM4B counteracts ferroptosis via suppressing the ubiquitin-proteasome degradation of SLC7A11 in non-small cell lung cancer. Cell Death Dis 2024; 15:436. [PMID: 38902268 PMCID: PMC11190201 DOI: 10.1038/s41419-024-06836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Dongjin Lv
- Department of Clinical Research, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Benny Björkblom
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Mingsong Wu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hongtao Yu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hao Leng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bingxiao Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Yuxiang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Miaomiao Gao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tomas Blom
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
3
|
Fougère L, Mongrand S, Boutté Y. The function of sphingolipids in membrane trafficking and cell signaling in plants, in comparison with yeast and animal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159463. [PMID: 38281556 DOI: 10.1016/j.bbalip.2024.159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sphingolipids are essential membrane components involved in a wide range of cellular, developmental and signaling processes. Sphingolipids are so essential that knock-out mutation often leads to lethality. In recent years, conditional or weak allele mutants as well as the broadening of the pharmacological catalog allowed to decipher sphingolipid function more precisely in a less invasive way. This review intends to provide a discussion and point of view on the function of sphingolipids with a main focus on endomembrane trafficking, Golgi-mediated protein sorting, cell polarity, cell-to-cell communication and cell signaling at the plasma membrane. While our main angle is the plant field research, we will constantly refer to and compare with the advances made in the yeast and animal field. In this review, we will emphasize the role of sphingolipids not only as a membrane component, but also as a key player at a center of homeostatic regulatory networks involving direct or indirect interaction with other lipids, proteins and ion fluxes.
Collapse
Affiliation(s)
- Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France.
| |
Collapse
|
4
|
Girik V, van Ek L, Dentand Quadri I, Azam M, Cruz Cobo M, Mandavit M, Riezman I, Riezman H, Gavin AC, Nunes-Hasler P. Development of Genetically Encoded Fluorescent KSR1-Based Probes to Track Ceramides during Phagocytosis. Int J Mol Sci 2024; 25:2996. [PMID: 38474242 DOI: 10.3390/ijms25052996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.
Collapse
Affiliation(s)
- Vladimir Girik
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Larissa van Ek
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maral Azam
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - María Cruz Cobo
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marion Mandavit
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Paula Nunes-Hasler
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Varela YR, Iriondo MN, Goñi FM, Alonso A, Montes LR. Ceramide regulation of autophagy: A biophysical approach. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159444. [PMID: 38056762 DOI: 10.1016/j.bbalip.2023.159444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.
Collapse
Affiliation(s)
- Yaiza R Varela
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Marina N Iriondo
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain.
| | - L Ruth Montes
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| |
Collapse
|
6
|
Yang S, Zhou P, Zhang L, Xie X, Zhang Y, Bo K, Xue J, Zhang W, Liao F, Xu P, Hu Y, Yan R, Liu D, Chang J, Zhou K. VAMP8 suppresses the metastasis via DDX5/β-catenin signal pathway in osteosarcoma. Cancer Biol Ther 2023; 24:2230641. [PMID: 37405957 DOI: 10.1080/15384047.2023.2230641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Osteosarcoma is a highly metastatic malignant bone tumor, necessitating the development of new treatments to target its metastasis. Recent studies have revealed the significance of VAMP8 in regulating various signaling pathways in various types of cancer. However, the specific functional role of VAMP8 in osteosarcoma progression remains unclear. In this study, we observed a significant downregulation of VAMP8 in osteosarcoma cells and tissues. Low levels of VAMP8 in osteosarcoma tissues were associated with patients' poor prognosis. VAMP8 inhibited the migration and invasion capability of osteosarcoma cells. Mechanically, we identified DDX5 as a novel interacting partner of VAMP8, and the conjunction of VAMP8 and DDX5 promoted the degradation of DDX5 via the ubiquitin-proteasome system. Moreover, reduced levels of DDX5 led to the downregulation of β-catenin, thereby suppressing the epithelial-mesenchymal transition (EMT). Additionally, VAMP8 promoted autophagy flux, which may contribute to the suppression of osteosarcoma metastasis. In conclusion, our study anticipated that VAMP8 inhibits osteosarcoma metastasis by promoting the proteasomal degradation of DDX5, consequently inhibiting WNT/β-catenin signaling and EMT. Dysregulation of autophagy by VAMP8 is also implicated as a potential mechanism. These findings provide new insights into the biological nature driving osteosarcoma metastasis and highlight the modulation of VAMP8 as a potential therapeutic strategy for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Lelei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Xiangpeng Xie
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yuanyi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kaida Bo
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Jing Xue
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Pengfei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruyu Yan
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Dan Liu
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kecheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Zhou K, Wang W, Tang J. Editorial: Functional screening for cancer drug discovery: from experimental approaches to data integration. Front Genet 2023; 14:1201454. [PMID: 37485338 PMCID: PMC10359426 DOI: 10.3389/fgene.2023.1201454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wenyu Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Yan R, Liu D, Wang J, Liu M, Guo H, Bai J, Yang S, Chang J, Yao Z, Yang Z, Blom T, Zhou K. miR-137-LAPTM4B regulates cytoskeleton organization and cancer metastasis via the RhoA-LIMK-Cofilin pathway in osteosarcoma. Oncogenesis 2023; 12:25. [PMID: 37147294 PMCID: PMC10163001 DOI: 10.1038/s41389-023-00471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Bai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
9
|
Murai Y, Honda T, Yuyama K, Mikami D, Eguchi K, Ukawa Y, Usuki S, Igarashi Y, Monde K. Evaluation of Plant Ceramide Species-Induced Exosome Release from Neuronal Cells and Exosome Loading Using Deuterium Chemistry. Int J Mol Sci 2022; 23:ijms231810751. [PMID: 36142663 PMCID: PMC9505575 DOI: 10.3390/ijms231810751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular accumulation of aggregated amyloid-β (Aβ) in the brain leads to the early pathology of Alzheimer’s disease (AD). The administration of exogenous plant-type ceramides into AD model mice can promote the release of neuronal exosomes, a subtype of extracellular vesicles, that can mediate Aβ clearance. In vitro studies showed that the length of fatty acids in mammalian-type ceramides is crucial for promoting neuronal exosome release. Therefore, investigating the structures of plant ceramides is important for evaluating the potential in releasing exosomes to remove Aβ. In this study, we assessed plant ceramide species with D-erythro-(4E,8Z)-sphingadienine and D-erythro-(8Z)-phytosphingenine as sphingoid bases that differ from mammalian-type species. Some plant ceramides were more effective than mammalian ceramides at stimulating exosome release. In addition, using deuterium chemistry-based lipidomics, most exogenous plant ceramides were confirmed to be derived from exosomes. These results suggest that the ceramide-dependent upregulation of exosome release may promote the release of exogenous ceramides from cells, and plant ceramides with long-chain fatty acids can effectively release neuronal exosomes and prevent AD pathology.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (K.Y.)
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (K.Y.)
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Koichi Eguchi
- Innovation and Business Development Headquarters, Daicel Corporation, Niigata 944-8550, Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy, Daicel Corporation, Tokyo 108-8259, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| |
Collapse
|
10
|
Liu M, Yan R, Wang J, Yao Z, Fan X, Zhou K. LAPTM4B-35 promotes cancer cell migration via stimulating integrin beta1 recycling and focal adhesion dynamics. Cancer Sci 2022; 113:2022-2033. [PMID: 35381120 PMCID: PMC9207373 DOI: 10.1111/cas.15362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metastasis is the main cause of cancer patients' death despite tremendous efforts invested in developing the related molecular mechanisms. During cancer cell migration, cells undergo dynamic regulation of filopodia, focal adhesion, and endosome trafficking. Cdc42 is imperative for maintaining cell morphology and filopodia, regulating cell movement. Integrin beta1 activates on the endosome, the majority of which distributes itself on the plasma membrane, indicating that endocytic trafficking is essential for this activity. In cancers, high expression of lysosome‐associated protein transmembrane 4B (LAPTM4B) is associated with poor prognosis. LAPTM4B‐35 has been reported as displaying plasma membrane distribution and being associated with cancer cell migration. However, the detailed mechanism of its isoform‐specific distribution and whether it relates to cell migration remain unknown. Here, we first report and quantify the filopodia localization of LAPTM4B‐35: mechanically, that specific interaction with Cdc42 promoted its localization to the filopodia. Furthermore, our data show that LAPTM4B‐35 stabilized filopodia and regulated integrin beta1 recycling via interaction and cotrafficking on the endosome. In our zebrafish xenograft model, LAPTM4B‐35 stimulated the formation and dynamics of focal adhesion, further promoting cancer cell dissemination, whereas in skin cancer patients, LAPTM4B level correlated with poor prognosis. In short, this study establishes an insight into the mechanism of LAPTM4B‐35 filopodia distribution, as well as into its biological effects and its clinical significance, providing a novel target for cancer therapeutics development.
Collapse
Affiliation(s)
- Minxia Liu
- School of Life Science, Anhui Medical University, Hefei, 230032, China.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Ruyu Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, China
| | - Xinyu Fan
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, 650031, China
| | - Kecheng Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland
| |
Collapse
|
11
|
Morana O, Nieto‐Garai JA, Björkholm P, Bernardino de la Serna J, Terrones O, Arboleya A, Ciceri D, Rojo‐Bartolomé I, Blouin CM, Lamaze C, Lorizate M, Contreras F. Identification of a New Cholesterol-Binding Site within the IFN-γ Receptor that is Required for Signal Transduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105170. [PMID: 35166455 PMCID: PMC9008429 DOI: 10.1002/advs.202105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Indexed: 05/05/2023]
Abstract
The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.
Collapse
Affiliation(s)
- Ornella Morana
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Patrik Björkholm
- Center for Biomembrane ResearchDepartment of Biochemistry and BiophysicsStockholm UniversityStockholmSE‐106 91Sweden
- Science for Life LaboratoryStockholm UniversitySolnaSE‐171 21Sweden
| | - Jorge Bernardino de la Serna
- National Heart and Lung InstituteFaculty of MedicineImperial College LondonSouth KensingtonSir Alexander Fleming BuildingLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC‐Research Complex at HarwellScience and Technology Facilities CouncilHarwellOX11 0QXUK
- NIHR Imperial Biomedical Research CentreLondonSW7 2AZUK
| | - Oihana Terrones
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Iratxe Rojo‐Bartolomé
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Cédric M. Blouin
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Christophe Lamaze
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Francesc‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
12
|
Yin Y, Fan Y, Yu G, Du Y. LAPTM4B promotes the progression of bladder cancer by stimulating cell proliferation and invasion. Oncol Lett 2021; 22:765. [PMID: 34589144 PMCID: PMC8442228 DOI: 10.3892/ol.2021.13026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a highly metastatic tumor and one of the most common malignant tumors originating in the urinary system. Due to the complicated etiology and lack of significant early symptoms, the diagnosis and treatment of bladder cancer is difficult. Lysosome-associated transmembrane protein 4β (LAPTM4B) was reported to be involved in the development and progression of several types of tumor, however, its potential effect on the development and metastasis of bladder cancer is still unclear. Immunohistochemistry was performed to detect the protein expression level of LAPTM4B in bladder cancer tissues and short hairpin RNAs targeting LAPTM4B were transfected into bladder cancer cells to knockdown its expression. MTT and colony formation assays were performed to detect cell proliferation, while wound healing and Transwell invasion assays were performed to detect cell migration and invasion, respectively. In addition, tumor growth assays were performed to confirm the effects of LAPTM4B in mice. The present study demonstrated that LAPTM4B was associated with the prognosis of patients with bladder cancer. In addition, LAPTM4B was associated with clinical characteristics, including tumor stage and recurrence. The results further showed that LAPTM4B knockdown could suppress the proliferation of bladder cancer cell lines. In addition, the migration and invasion of T24 and 5637 cells was suppressed following LAPTM4B knockdown in vitro. The in vivo data confirmed that knockdown of LAPTM4B markedly inhibited tumor growth and metastasis in mice. In summary, the results from the present study provide strong evidence of the effects of LAPTM4B in bladder cancer progression.
Collapse
Affiliation(s)
- Yanhua Yin
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yanyan Fan
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Gang Yu
- Department of Public Health, Liaocheng Cancer Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ying Du
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
13
|
Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int J Mol Sci 2021; 22:ijms22169026. [PMID: 34445730 PMCID: PMC8396450 DOI: 10.3390/ijms22169026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins exist within the highly hydrophobic membranes surrounding cells and organelles, playing key roles in cellular function. It is becoming increasingly clear that the membrane does not just act as an appropriate environment for these proteins, but that the lipids that make up these membranes are essential for membrane protein structure and function. Recent technological advances in cryogenic electron microscopy and in advanced mass spectrometry methods, as well as the development of alternative membrane mimetic systems, have allowed experimental study of membrane protein–lipid complexes. These have been complemented by computational approaches, exploiting the ability of Molecular Dynamics simulations to allow exploration of membrane protein conformational changes in membranes with a defined lipid content. These studies have revealed the importance of lipids in stabilising the oligomeric forms of membrane proteins, mediating protein–protein interactions, maintaining a specific conformational state of a membrane protein and activity. Here we review some of the key recent advances in the field of membrane protein–lipid studies, with major emphasis on respiratory complexes, transporters, channels and G-protein coupled receptors.
Collapse
|
14
|
Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021; 35:e21732. [PMID: 34143450 DOI: 10.1096/fj.202100385r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Su Q, Luo H, Zhang M, Gao L, Zhao F. LAPTM4B promotes the progression of nasopharyngeal cancer. Bosn J Basic Med Sci 2021; 21:305-312. [PMID: 32651973 PMCID: PMC8112566 DOI: 10.17305/bjbms.2020.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Lysosomal protein transmembrane 4 beta (LAPTM4B) is a protein that contains four transmembrane domains. The impact of LAPTM4B on the malignancy of nasopharyngeal carcinoma (NPC) remains unclear. In the present study, we aimed to investigate the role of LAPTM4B in NPC. NPC tissue samples were used to evaluate the expression of LAPTM4B and its relationship with patient prognosis. Furthermore, we inhibited the expression of LAPTM4B in NPC cell lines and examined the effects of LAPTM4B on NPC cell proliferation, migration, and invasion. We found that LAPTM4B protein was mainly localized in the cytoplasm and intracellular membranes of NPC cells. LAPTM4B protein was upregulated in NPC tissues and cell lines. High LAPTM4B expression was closely related to pathological subtypes and disease stages in NPC patients. NPC patients with high LAPTM4B expression had a worse prognosis. LAPTM4B knockdown inhibited the proliferation, migration, and invasion ability of NPC cells. LAPTM4B plays a cancer-promoting role in the progression of NPC and may be a potential target for NPC therapy.
Collapse
Affiliation(s)
- Qun Su
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Hongtao Luo
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Ming Zhang
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Liying Gao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Fengju Zhao
- Department of Radiotherapy, Gansu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
16
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
17
|
Dichlberger A, Zhou K, Bäck N, Nyholm T, Backman A, Mattjus P, Ikonen E, Blom T. LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158855. [PMID: 33181324 DOI: 10.1016/j.bbalip.2020.158855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is a four-membrane spanning ceramide interacting protein that regulates mTORC1 signaling. Here, we show that LAPTM4B is sorted into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) and released in small extracellular vesicles (sEVs) into conditioned cell culture medium and human urine. Efficient sorting of LAPTM4B into ILV membranes depends on its third transmembrane domain containing a sphingolipid interaction motif (SLim). Unbiased lipidomic analysis reveals a strong enrichment of glycosphingolipids in sEVs secreted from LAPTM4B knockout cells and from cells expressing a SLim-deficient LAPTM4B mutant. The altered sphingolipid profile is accompanied by a distinct SLim-dependent co-modulation of ether lipid species. The changes in the lipid composition of sEVs derived from LAPTM4B knockout cells is reflected by an increased stability of membrane nanodomains of sEVs. These results identify LAPTM4B as a determinant of the glycosphingolipid profile and membrane properties of sEVs.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Kecheng Zhou
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Nils Bäck
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Thomas Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Anders Backman
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Tomas Blom
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
18
|
Yuyama K, Sun H, Mikami D, Mioka T, Mukai K, Igarashi Y. Lysosomal-associated transmembrane protein 4B regulates ceramide-induced exosome release. FASEB J 2020; 34:16022-16033. [PMID: 33090522 DOI: 10.1096/fj.202001599r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Exosomes are extracellular vesicles that mediate the transport of intracellular molecules, including neurodegenerative agents. Exogenously administrated ceramides have been implicated in the acceleration of exosome production by neurons; however, the molecular machinery involved in this process is unknown. Here, we found that ceramides, especially those consisting of long fatty acids, were internalized into the endocytic pathway in neuroblastoma SH-SY5Y cells to induce exosome secretion through lysosome-associated protein transmembrane 4B (LAPTM4B). Knockdown of LAPTM4B inhibited the ceramide-mediated increase in exosome release completely. Fluorescence microscopy observations indicated that exogenous ceramides promote the transport of multivesicular bodies to the plasma membranes in a LAPTM4B-dependent manner. Similarly, inhibition of acid ceramidase, which tends to induce intracellular ceramide accumulation, increased exosome production by SH-SY5Y cells in a LAPTM4B-dependent manner. Furthermore, the level of amyloid-ß protein (Aß) was decreased in neuronal cells following treatment with exogenous ceramide or inhibition of acid ceramidase, and this effect was attributed to the LAPTM4B-dependent efflux of Aß-containing exosomes. Overall, these findings reveal the novel machinery involved in exosome secretion regulated by ceramides and LAPTM4B, and may contribute to efforts to ameliorate the cellular accumulation of neurodegenerative agents such as Aß.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Zhou K, Dichlberger A, Ikonen E, Blom T. Lysosome Associated Protein Transmembrane 4B-24 Is the Predominant Protein Isoform in Human Tissues and Undergoes Rapid, Nutrient-Regulated Turnover. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2018-2028. [DOI: 10.1016/j.ajpath.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
|
20
|
Wang ZX, Guo MY, Ren J, Li GS, Sun XG. Identification of Lysosome-Associated Protein Transmembrane-4 as a Novel Therapeutic Target for Osteosarcoma Treatment. Orthop Surg 2020; 12:1253-1260. [PMID: 32558212 PMCID: PMC7454209 DOI: 10.1111/os.12692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The aim of the study is to evaluate the expression of lysosome-associated protein transmembrane-4 (LAPTM4B) in human osteosarcoma tissue samples collected in our hospital, and to explore the possible correlations between the clinical pathological features of osteosarcoma patients and LAPTM4B expression. METHODS Immunohistochemical (IHC) assays were performed to detect the expression levels of LAPTM4B in 62 tissue samples of osteosarcoma tissues and corresponding non-tumor tissues. According to LAPTM4B staining intensity in tumor tissues, osteosarcoma patients were classified into LAPTM4B high expression and low expression groups. In addition, the potential correlations between LAPTM4B expression levels and clinical pathological features were evaluated. In addition, we detected the effects of LAPTM4B on the proliferation and invasion of esteosarcoma cells through colony formation assay and transwell assay, respectively. We further explored the potential effects of LAPTM4B on tumor growth and metastasis using in vivo animal model. RESULTS We revealed that LAPTM4B was highly expressed in human osteosarcoma tissues. We determined the significance between LAPTM4B and clinical features, including the tumor size (P = 0.004*) and the clinical stage (P = 0.035*) of osteosarcoma patients. Our results further demonstrated that ablation of LAPTM4B obviously blocked the proliferation and invasion of osteosarcoma cells in vitro and restrained tumor growth and metastasis in mice. CONCLUSION We investigated the potential involvement of LAPTM4B in osteosarcoma progression and confirmed LAPTM4B as a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zhe-Xiang Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Meng-Yang Guo
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Gui-Shi Li
- Department of Joint Orthopaedics, Yantai Yuhuangding Hospital, Yantai, China
| | - Xu-Guo Sun
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
22
|
Zhu Z, Chen J, Wang G, Elsherbini A, Zhong L, Jiang X, Qin H, Tripathi P, Zhi W, Spassieva SD, Morris AJ, Bieberich E. Ceramide regulates interaction of Hsd17b4 with Pex5 and function of peroxisomes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1514-1524. [PMID: 31176039 DOI: 10.1016/j.bbalip.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
The sphingolipid ceramide regulates beta-oxidation of medium and long chain fatty acids in mitochondria. It is not known whether it also regulates oxidation of very long chain fatty acids (VLCFAs) in peroxisomes. Using affinity chromatography, co-immunoprecipitation, and proximity ligation assays we discovered that ceramide interacts with Hsd17b4, an enzyme critical for peroxisomal VLCFA oxidation and docosahexaenoic acid (DHA) generation. Immunocytochemistry showed that Hsd17b4 is distributed to ceramide-enriched mitochondria-associated membranes (CEMAMs). Molecular docking and in vitro mutagenesis experiments showed that ceramide binds to the sterol carrier protein 2-like domain in Hsd17b4 adjacent to peroxisome targeting signal 1 (PTS1), the C-terminal signal for interaction with peroxisomal biogenesis factor 5 (Pex5), a peroxin mediating transport of Hsd17b4 into peroxisomes. Inhibition of ceramide biosynthesis induced translocation of Hsd17b4 from CEMAMs to peroxisomes, interaction of Hsd17b4 with Pex5, and upregulation of DHA. This data indicates a novel role of ceramide as a molecular switch regulating interaction of Hsd17b4 with Pex5 and peroxisomal function.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Jianzhong Chen
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America; School of Life Science, China Medical University, Shenyang, PR China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America; Department of Rehabilitation, ShengJing Hospital of China Medical University, Shenyang, PR China
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA. United States of America
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Andrew J Morris
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America; Lexington Veteran Affairs Medical Center, Lexington, KY, United States of America
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
23
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
25
|
Dadsena S, Bockelmann S, Mina JGM, Hassan DG, Korneev S, Razzera G, Jahn H, Niekamp P, Müller D, Schneider M, Tafesse FG, Marrink SJ, Melo MN, Holthuis JCM. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat Commun 2019; 10:1832. [PMID: 31015432 PMCID: PMC6478893 DOI: 10.1038/s41467-019-09654-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.
Collapse
Affiliation(s)
- Shashank Dadsena
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Svenja Bockelmann
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - John G M Mina
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.
- School of Science, Engineering and Design, Teesside University, Middlesbrough, TS1 3BX, UK.
| | - Dina G Hassan
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| | - Sergei Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Guilherme Razzera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Helene Jahn
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Patrick Niekamp
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Dagmar Müller
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
| | - Markus Schneider
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Plant Physiology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
| | - Fikadu G Tafesse
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany.
- Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Brügger B. Inconspicuous Little Allies: How Membrane Lipids Help Modulate Protein Function. ACS CENTRAL SCIENCE 2018; 4:530-531. [PMID: 29805997 PMCID: PMC5968507 DOI: 10.1021/acscentsci.8b00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|