1
|
Pawan, Devi S. Designing of new trans-stilbene derivative: An entry barrier of Zika virus in host cell. J Mol Graph Model 2025; 135:108935. [PMID: 39731815 DOI: 10.1016/j.jmgm.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, 1H NMR,13C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS). Moreover, the complete structure elucidation was achieved via X-ray crystallography and DFT analysis. The article describes the life cycle and genome of the Zika virus along with its mechanism of entry inhibition by illustrating the structure and function of the ZIKV envelop (E) protein. The docking studies disclosed that the newly synthesized stilbene compound confers an excellent inhibitory response towards the entry of Zika virus in host cells as supported by calculated docking score and its binding conformation with Zika virus E-protein. Further, the normal mode analysis (NMA) simulation technique is used to predict the conformational states of the target E-protein, which explains the potency of the compound to bind with the Zika virus E-protein. We hope that the present study will help and encourage researchers in the field of medicinal chemistry to develop potential drugs against the Zika virus.
Collapse
Affiliation(s)
- Pawan
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma (GGDSD) College, Chandigarh, 160030, India.
| | - Sonia Devi
- Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India
| |
Collapse
|
2
|
Cervantes M, Mannsverk S, Hess T, Filipe D, Villamil Giraldo A, Kasson PM. Single-Virus Microscopy of Biochemical Events in Viral Entry. JACS AU 2025; 5:399-407. [PMID: 39886585 PMCID: PMC11775682 DOI: 10.1021/jacsau.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics. Single-event distributions compiled from individual viral particle measurements have enabled estimates of protein stoichiometry at fusion interfaces, a better understanding of the rate-limiting steps for fusion, and a more robust identification of the biochemical regulatory factors for viral entry. Recent technical advances have made these experiments feasible on less specialized microscopes, increasing their accessibility to a broad range of scientists. Single-virus entry kinetics have now been measured for a wide range of enveloped viruses and on both synthetic and physiological substrates. Here, we briefly review the major progress in the area. We then describe the critical apparatus, protocols, analytical techniques, and optimizations needed for robust measurements of virus-membrane interactions.
Collapse
Affiliation(s)
- Marcos Cervantes
- Department
of Biomedical Engineering, University of
Virginia, Box 800759, Charlottesville, Virginia 22908, United States
| | - Steinar Mannsverk
- Science
for Life Laboratory and Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala 75124, Sweden
| | - Tobin Hess
- Departments
of Biomedical Engineering and Chemistry & Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Diogo Filipe
- Science
for Life Laboratory and Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala 75124, Sweden
| | - Ana Villamil Giraldo
- Science
for Life Laboratory and Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala 75124, Sweden
| | - Peter M. Kasson
- Department
of Biomedical Engineering, University of
Virginia, Box 800759, Charlottesville, Virginia 22908, United States
- Science
for Life Laboratory and Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala 75124, Sweden
- Departments
of Biomedical Engineering and Chemistry & Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Obłoza M, Milewska A, Botwina P, Szczepański A, Medaj A, Bonarek P, Szczubiałka K, Pyrć K, Nowakowska M. Curcumin-Poly(sodium 4-styrenesulfonate) Conjugates as Potent Zika Virus Entry Inhibitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5426-5437. [PMID: 38277775 PMCID: PMC10859898 DOI: 10.1021/acsami.3c13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Curcumin, a natural product with recognized antiviral properties, is limited in its application largely due to its poor solubility. This study presents the synthesis of water-soluble curcumin-poly(sodium 4-styrenesulfonate) (Cur-PSSNan) covalent conjugates. The antiflaviviral activity of conjugates was validated in vitro by using the Zika virus as a model. In the development of these water-soluble curcumin-containing derivatives, we used the macromolecules reported by us to also hamper viral infections. Mechanistic investigations indicated that the conjugates exhibited excellent stability and bioavailability. The curcumin and macromolecules in concerted action interact directly with virus particles and block their attachment to host cells, hampering the infection process.
Collapse
Affiliation(s)
- Magdalena Obłoza
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Paweł Botwina
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
- Department
of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Artur Szczepański
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Aneta Medaj
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza 11, 30-348 Cracow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Putri GN, Gudla CS, Singh M, Ng CH, Idris FFH, Oo Y, Tan JHY, Wong JFJ, Chu JJH, Selvam V, Selvaraj SS, Shandil RK, Narayanan S, Alonso S. Expanding the anti-flaviviral arsenal: Discovery of a baicalein-derived Compound with potent activity against DENV and ZIKV. Antiviral Res 2023; 220:105739. [PMID: 37944824 DOI: 10.1016/j.antiviral.2023.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
With approximately 3.8 billion people at risk of infection in tropical and sub-tropical regions, Dengue ranks among the top ten threats worldwide. Despite the potential for severe disease manifestation and the economic burden it places on endemic countries, there is a lack of approved antiviral agents to effectively treat the infection. Flavonoids, including baicalein, have garnered attention for their antimicrobial properties. In this study, we took a rational and iterative approach to develop a series of baicalein derivatives with improved antiviral activity against Dengue virus (DENV). Compound 11064 emerged as a promising lead candidate, exhibiting antiviral activity against the four DENV serotypes and representative strains of Zika virus (ZIKV) in vitro, with attractive selectivity indices. Mechanistic studies revealed that Compound 11064 did not prevent DENV attachment at the cell surface, nor viral RNA synthesis and viral protein translation. Instead, the drug was found to impair the post-receptor binding entry steps (endocytosis and/or uncoating), as well as the late stage of DENV infection cycle, including virus assembly/maturation and/or exocytosis. The inability to raise DENV resistant mutants, combined with significant antiviral activity against an unrelated RNA virus (Enterovirus-A71) suggested that Compound 11064 targets the host rather than a viral protein, further supporting its broad-spectrum antiviral potential. Overall, Compound 11064 represents a promising antiviral candidate for the treatment of Dengue and Zika.
Collapse
Affiliation(s)
- Geraldine Nadya Putri
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Mayas Singh
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | - Chin Huan Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Fitri Haji Idris
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Joel Feng Jie Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore
| | - Vignesh Selvam
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | | | | | | | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Roessler J, Pich D, Krähling V, Becker S, Keppler OT, Zeidler R, Hammerschmidt W. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023; 11:2892. [PMID: 38001893 PMCID: PMC10669694 DOI: 10.3390/biomedicines11112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Oliver T. Keppler
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, 81377 Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| |
Collapse
|
6
|
Tian X, Risgaard NA, Löffler PMG, Vogel S. DNA-Programmed Lipid Nanoreactors for Synthesis of Carbohydrate Mimetics by Fusion of Aqueous Sub-attoliter Compartments. J Am Chem Soc 2023; 145:19633-19641. [PMID: 37619973 PMCID: PMC10510321 DOI: 10.1021/jacs.3c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/26/2023]
Abstract
Lipid nanoreactors are biomimetic reaction vessels (nanoreactors) that can host aqueous or membrane-associated chemical and enzymatic reactions. Nanoreactors provide ultra-miniaturization from atto- to zeptoliter volumes per reaction vessel with the major challenge of encoding and spatio-temporal control over reactions at the individual nanoreactor or population level, thereby controlling volumes several orders of magnitude below advanced microfluidic devices. We present DNA-programmed lipid nanoreactors (PLNs) functionalized with lipidated oligonucleotides (LiNAs) that allow programming and encoding of nanoreactor interactions by controlled membrane fusion, exemplified for a set of carbohydrate mimetics with mono- to hexasaccharide azide building blocks connected by click-chemistry. Programmed reactions are initiated by fusion of distinct populations of nanoreactors with individually encapsulated building blocks. A focused library of triazole-linked carbohydrate-Cy5 conjugates formed by strain-promoted azide-alkyne cycloadditions demonstrated LiNA-programmed chemistry, including two-step reaction schemes. The PLN method is developed toward a robust platform for synthesis in confined space employing fully programmable nanoreactors, applicable to multistep synthesis for the generation of combinatorial libraries with subsequent analysis of the molecules formed, based on the addressability of the lipid nanoreactors.
Collapse
Affiliation(s)
- Xinwei Tian
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nikolaj Alexander Risgaard
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Philipp M. G. Löffler
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
7
|
Cervantes M, Hess T, Morbioli GG, Sengar A, Kasson PM. The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion. Chem Sci 2023; 14:6997-7004. [PMID: 37389252 PMCID: PMC10306070 DOI: 10.1039/d2sc06967a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The SARS-CoV-2 coronavirus infects human cells via the ACE2 receptor. Structural evidence suggests that ACE2 may not just serve as an attachment factor but also conformationally activate the SARS-CoV-2 spike protein for membrane fusion. Here, we test that hypothesis directly, using DNA-lipid tethering as a synthetic attachment factor in place of ACE2. We find that SARS-CoV-2 pseudovirus and virus-like particles are capable of membrane fusion without ACE2 if activated with an appropriate protease. Thus, ACE2 is not biochemically required for SARS-CoV-2 membrane fusion. However, addition of soluble ACE2 speeds up the fusion reaction. On a per-spike level, ACE2 appears to promote activation for fusion and then subsequent inactivation if an appropriate protease is not present. Kinetic analysis suggests at least two rate-limiting steps for SARS-CoV-2 membrane fusion, one of which is ACE2 dependent and one of which is not. Since ACE2 serves as a high-affinity attachment factor on human cells, the possibility to replace it with other factors implies a flatter fitness landscape for host adaptation by SARS-CoV-2 and future related coronaviruses.
Collapse
Affiliation(s)
- Marcos Cervantes
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Tobin Hess
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Giorgio G Morbioli
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Anjali Sengar
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Peter M Kasson
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
- Science for Life Laboratory and Department of Molecular and Cellular Biology, Uppsala University Uppsala SE 75123 USA
| |
Collapse
|
8
|
Yan A, Chen X, He J, Ge Y, Liu Q, Men D, Xu K, Li D. Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuli-Responsive Cell-Specific Intracellular Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202303973. [PMID: 37100742 DOI: 10.1002/anie.202303973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qing Liu
- Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dong Men
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
9
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Villamil Giraldo AM, Mannsverk S, Kasson PM. Measuring single-virus fusion kinetics using an assay for nucleic acid exposure. Biophys J 2022; 121:4467-4475. [PMID: 36330566 PMCID: PMC9748363 DOI: 10.1016/j.bpj.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The kinetics by which individual enveloped viruses fuse with membranes provide an important window into viral-entry mechanisms. We have developed a real-time assay using fluorescent probes for single-virus genome exposure than can report on stages of viral entry including or subsequent to fusion pore formation and prior to viral genome trafficking. We accomplish this using oxazole yellow nucleic-acid-binding dyes, which can be encapsulated in the lumen of target membranes to permit specific detection of fusion events. Since increased fluorescence of the dye occurs only when it encounters viral genome via a fusion pore and binds, this assay excludes content leakage without fusion. Using this assay, we show that influenza virus fuses with liposomes of different sizes with indistinguishable kinetics by both testing liposomes extruded through pores of different radii and showing that the fusion kinetics of individual liposomes are uncorrelated with the size of the liposome. These results suggest that the starting curvature of such liposomes does not control the rate-limiting steps in influenza entry.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Steinar Mannsverk
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
11
|
Haldar S. Recent Developments in Single-Virus Fusion Assay. J Membr Biol 2022; 255:747-755. [PMID: 36173449 DOI: 10.1007/s00232-022-00270-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Viral infection is a global health hazard. A crucial step in the infection cycle of enveloped viruses is the fusion of viral and host cellular membranes, which permits the transfer of the viral genome to the host cells. Membrane fusion is a ubiquitous process involved in sperm-egg fusion, exocytosis, vesicular trafficking, and viral entry to host cells. While different protein machineries catalyze the diverse fusion processes, the essential step, i.e., merging of two lipid bilayers against a kinetic energy barrier, is the same. Therefore, viral fusion machineries/pathways are not only the sites for antiviral drug development but also serve as model fusogens. Ensemble-based spectroscopic approaches or bulk fusion assays have yielded valuable insights regarding the fusion processes. However, due to the stochastic nature of the fusion events, ensemble-based assays do not permit synchronization of all the fusion events, and the molecular steps leading to fusion pore opening cannot be resolved entirely and correlated with the structural changes in viral fusion proteins. Several single-virus fusion assays have been developed to circumvent these issues. The review describes the recent advancements in single-virus/particle fusion assays using the Influenza virus as a paradigm.
Collapse
Affiliation(s)
- Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
12
|
Mechanistic dissection of antibody inhibition of influenza entry yields unexpected heterogeneity. Biophys J 2022:S0006-3495(22)00864-5. [DOI: 10.1016/j.bpj.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
|
13
|
Lam A, Yuan DS, Ahmed SH, Rawle RJ. Viral Size Modulates Sendai Virus Binding to Cholesterol-Stabilized Receptor Nanoclusters. J Phys Chem B 2022; 126:6802-6810. [PMID: 36001793 PMCID: PMC9484459 DOI: 10.1021/acs.jpcb.2c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Binding to the host membrane is the initial infection step for animal viruses. Sendai virus (SeV), the model respirovirus studied here, utilizes sialic-acid-conjugated glycoproteins and glycolipids as receptors for binding. In a previous report studying single virus binding to supported lipid bilayers (SLBs), we found a puzzling mechanistic difference between the binding of SeV and influenza A virus (strain X31, IAVX31). Both viruses use similar receptors and exhibit similar cooperative binding behavior, but whereas IAVX31 binding was altered by SLB cholesterol concentration, which can stabilize receptor nanoclusters, SeV was not. Here, we propose that differences in viral size distributions can explain this discrepancy; viral size could alter the number of virus-receptor interactions in the contact area and, therefore, the sensitivity to receptor nanoclusters. To test this, we compared the dependence of SeV binding on SLB cholesterol concentration between size-filtered and unfiltered SeV. At high receptor density, the unfiltered virus showed little dependence, but the size-filtered virus exhibited a linear cholesterol dependence, similar to IAVX31. However, at low receptor densities, the unfiltered virus did exhibit a cholesterol dependence, indicating that receptor nanoclusters enhance viral binding only when the number of potential virus-receptor interactions is small enough. We also studied the influence of viral size and receptor nanoclusters on viral mobility following binding. Whereas differences in viral size greatly influenced mobility, the effect of receptor nanoclusters on mobility was small. Together, our results highlight the mechanistic salience of both the distribution of viral sizes and the lateral distribution of receptors in a viral infection.
Collapse
Affiliation(s)
- Amy Lam
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Daniel S. Yuan
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Samir H. Ahmed
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| |
Collapse
|
14
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
15
|
Schmidt TF, Caseli L. Molecular organization of dengue fusion peptide in phospholipid monolayers revealed by tensiometry and vibrational spectroscopy. Colloids Surf B Biointerfaces 2022; 215:112477. [PMID: 35381500 DOI: 10.1016/j.colsurfb.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
The interaction of Dengue fusion peptide (FLAg) in selected lipid Langmuir monolayers was characterized with surface pressure-area isotherms and infrared spectroscopy to investigate the role of the membrane charge and molecular organization in the peptide-lipid binding. Surface pressure-area isotherms were employed to analyze the thermodynamic and mechanical properties of the FLAg-lipid monolayer, showing that charged lipid monolayers showed different peptide adsorption patterns for an optimized peptide concentration (maximum membrane adsorption). Polarization modulation infrared reflection-absorption spectroscopy pointed out that incorporating FLAg changed the dipole orientations for the lipid polar head groups, as confirmed in PG-containing monolayers. Also, FLAg reorients the lipid film when it interacts with the phosphate and choline groups. Finally, analysis of the 310-helix bands suggests that FLAg assumes a configuration as a hairpin, an essential premise for the beginning of the membrane fusion process.
Collapse
Affiliation(s)
- Thaís F Schmidt
- Universidade Federal de São Paulo, Diadema, SP, Brazil; Universidade Municipal de São Caetano do Sul, São Caetano do Sul, SP, Brazil.
| | | |
Collapse
|
16
|
Lam A, Kirkland OO, Anderson PF, Seetharaman N, Vujovic D, Thibault PA, Azarm KD, Lee B, Rawle RJ. Single-virus assay reveals membrane determinants and mechanistic features of Sendai virus binding. Biophys J 2022; 121:956-965. [PMID: 35150620 PMCID: PMC8943810 DOI: 10.1016/j.bpj.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sendai virus (SeV, formally murine respirovirus) is a membrane-enveloped, negative-sense RNA virus in the Paramyxoviridae family and is closely related to human parainfluenza viruses. SeV has long been utilized as a model paramyxovirus and has recently gained attention as a viral vector candidate for both laboratory and clinical applications. To infect host cells, SeV must first bind to sialic acid glycolipid or glycoprotein receptors on the host cell surface via its hemagglutinin-neuraminidase (HN) protein. Receptor binding induces a conformational change in HN, which allosterically triggers the viral fusion (F) protein to catalyze membrane fusion. While it is known that SeV binds to α2,3-linked sialic acid receptors, and there has been some study into the chemical requirements of those receptors, key mechanistic features of SeV binding remain unknown, in part because traditional approaches often convolve binding and fusion. Here, we develop and employ a fluorescence microscopy-based assay to observe SeV binding to supported lipid bilayers (SLBs) at the single-particle level, which easily disentangles binding from fusion. Using this assay, we investigate mechanistic questions of SeV binding. We identify chemical structural features of ganglioside receptors that influence viral binding and demonstrate that binding is cooperative with respect to receptor density. We measure the characteristic decay time of unbinding and provide evidence supporting a "rolling" mechanism of viral mobility following receptor binding. We also study the dependence of binding on target cholesterol concentration. Interestingly, we find that although SeV binding shows striking parallels in cooperative binding with a prior report of Influenza A virus, it does not demonstrate a similar sensitivity to cholesterol concentration and receptor nanocluster formation.
Collapse
Affiliation(s)
- Amy Lam
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | | | | | | | - Dragan Vujovic
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristopher D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert J Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts.
| |
Collapse
|
17
|
Frias IAM, Vega Gonzales Gil LH, Cordeiro MT, Oliveira MDL, Andrade CAS. Self-Enriching Electrospun Biosensors for Impedimetric Sensing of Zika Virus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41-48. [PMID: 34932313 DOI: 10.1021/acsami.1c14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 μg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 μg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 μg ZIKV/mg. The impedance LOD value was determined to be 2.76 μg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.
Collapse
Affiliation(s)
- Isaac A M Frias
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Marli T Cordeiro
- Institute Aggeu Magalhães (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 21040-900, Brazil
| | - Maria D L Oliveira
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Cesar A S Andrade
- Therapeutic Innovation Program, Federal University of Pernambuco, Recife 50670-901, Brazil
- Biochemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
18
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
19
|
Liu KN, Boxer SG. Single-virus content-mixing assay reveals cholesterol-enhanced influenza membrane fusion efficiency. Biophys J 2021; 120:4832-4841. [PMID: 34536389 DOI: 10.1016/j.bpj.2021.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022] Open
Abstract
To infect a cell, enveloped viruses must first undergo membrane fusion, which proceeds through a hemifusion intermediate, followed by the formation of a fusion pore through which the viral genome is transferred to a target cell. Single-virus fusion studies to elucidate the dynamics of content mixing typically require extensive fluorescent labeling of viral contents. The labeling process must be optimized depending on the virus identity and strain and can potentially be perturbative to viral fusion behavior. Here, we introduce a single-virus assay in which content-labeled vesicles are bound to unlabeled influenza A virus (IAV) to eliminate the problematic step of content-labeling virions. We use fluorescence microscopy to observe individual, pH-triggered content mixing and content-loss events between IAV and target vesicles of varying cholesterol compositions. We show that target membrane cholesterol increases the efficiency of IAV content mixing and decreases the fraction of content-mixing events that result in content loss. These results are consistent with previous findings that cholesterol stabilizes pore formation in IAV entry and limits leakage after pore formation. We also show that content loss due to hemagglutinin fusion peptide engagement with the target membrane is independent of composition. This approach is a promising strategy for studying the single-virus content-mixing kinetics of other enveloped viruses.
Collapse
Affiliation(s)
- Katherine N Liu
- Department of Chemistry, Stanford University, Stanford, California
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
20
|
Park A, Graceffa O, Rawle RJ. Kinetic Modeling of West Nile Virus Fusion Indicates an Off-Pathway State. ACS Infect Dis 2020; 6:3260-3268. [PMID: 33201665 DOI: 10.1021/acsinfecdis.0c00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
West Nile virus (WNV) is a prominent mosquito-borne flavivirus that causes febrile illness in humans. To infect host cells, WNV virions first bind to plasma membrane receptors, then initiate membrane fusion following endocytosis. The viral transmembrane E protein, triggered by endosomal pH, catalyzes fusion while undergoing a dimer-to-trimer transition. Previously, single-particle WNV fusion data was interrogated with a stochastic cellular automaton simulation, which modeled the E proteins during the fusion process. The results supported a linear fusion mechanism, with E protein trimerization being rate-limiting. Here, we present corrections to the previous simulation, and apply them to the WNV fusion data. We observe that a linear mechanism is no longer sufficient to fit the data. Instead, an off-pathway state is necessary; these results are corroborated by per virus chemical kinetics modeling. When compared with a similar Zika virus fusion model, this suggests that off-pathway fusion mechanisms may characterize flaviviruses more broadly.
Collapse
Affiliation(s)
- Abraham Park
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| |
Collapse
|
21
|
Haldar S, Okamoto K, Dunning RA, Kasson PM. Precise Triggering and Chemical Control of Single-Virus Fusion within Endosomes. J Virol 2020; 95:e01982-20. [PMID: 33115879 PMCID: PMC7737740 DOI: 10.1128/jvi.01982-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Many enveloped viruses infect cells within endocytic compartments. The pH drop that accompanies endosomal maturation, often in conjunction with proteolysis, triggers viral proteins to insert into the endosomal membrane and drive fusion. Fusion dynamics have been studied by tracking viruses within living cells, which limits the precision with which fusion can be synchronized and controlled, and reconstituting viral fusion to synthetic membranes, which introduces nonphysiological membrane curvature and composition. To overcome these limitations, we report chemically controllable triggering of single-virus fusion within endosomes. We isolated influenza (A/Aichi/68; H3N2) virus:endosome conjugates from cells, immobilized them in a microfluidic flow cell, and rapidly and controllably triggered fusion. Observed lipid-mixing kinetics were surprisingly similar to those of influenza virus fusion with model membranes of opposite curvature: 80% of single-virus events had indistinguishable kinetics. This result suggests that endosomal membrane curvature is not a key permissive feature for viral entry, at least lipid mixing. The assay preserved endosomal membrane asymmetry and protein composition, providing a platform to test how cellular restriction factors and altered endosomal trafficking affect viral membrane fusion.IMPORTANCE Many enveloped viruses infect cells via fusion to endosomes, but controlling this process within living cells has been challenging. We studied the fusion of influenza virus virions to endosomes in a chemically controllable manner. Extracting virus:endosome conjugates from cells and exogenously triggering fusion permits precise study of virus:endosome fusion kinetics. Surprisingly, endosomal curvature does not grossly alter fusion kinetics, although membrane deformability does. This supports a model for influenza virus entry where cells restrict or permit membrane fusion by changing deformability, for instance, using interferon-induced proteins.
Collapse
Affiliation(s)
- Sourav Haldar
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kenta Okamoto
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Rebecca A Dunning
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Morbioli GG, Speller NC, Stockton AM. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Anal Chim Acta 2020; 1135:150-174. [PMID: 33070852 DOI: 10.1016/j.aca.2020.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Micro total analytical systems (μTAS) are attractive to multiple fields that include chemistry, medicine and engineering due to their portability, low power usage, potential for automation, and low sample and reagent consumption, which in turn results in low waste generation. The development of fully-functional μTAS is an iterative process, based on the design, fabrication and testing of multiple prototype microdevices. Typically, microfabrication protocols require a week or more of highly-skilled personnel time in high-maintenance cleanroom facilities, which makes this iterative process cost-prohibitive in many locations worldwide. Rapid-prototyping tools, in conjunction with the use of polydimethylsiloxane (PDMS), enable rapid development of microfluidic structures at lower costs, circumventing these issues in conventional microfabrication techniques. Multiple rapid-prototyping methods to fabricate PDMS-based microfluidic devices have been demonstrated in literature since the advent of soft-lithography in 1998; each method has its unique advantages and drawbacks. Here, we present a tutorial discussing current rapid-prototyping techniques to fabricate PDMS-based microdevices, including soft-lithography, print-and-peel and scaffolding techniques, among other methods, specifically comparing resolution of the features, fabrication processes and associated costs for each technique. We also present thoughts and insights towards each step of the iterative microfabrication process, from design to testing, to improve the development of fully-functional PDMS-based microfluidic devices at faster rates and lower costs.
Collapse
Affiliation(s)
| | - Nicholas Colby Speller
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
23
|
Villamil Giraldo AM, Kasson PM. Bilayer-Coated Nanoparticles Reveal How Influenza Viral Entry Depends on Membrane Deformability but Not Curvature. J Phys Chem Lett 2020; 11:7190-7196. [PMID: 32808796 DOI: 10.1021/acs.jpclett.0c01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enveloped viruses infect cells via fusion between the viral envelope and a cellular membrane. This membrane fusion process is driven by viral proteins, but slow stochastic protein activation dominates the fusion kinetics, making it challenging to probe the role of membrane mechanics in viral entry directly. Furthermore, many changes to the interacting membranes alter the curvature, deformability, and spatial organization of membranes simultaneously. We have used bilayer-coated silica nanoparticles to restrict the deformability of lipid membranes in a controllable manner. The single-event kinetics for fusion of influenza virus to coated nanoparticles permits independent testing of how the membrane curvature and deformability control the free energy barriers to fusion. Varying the free energy of membrane deformation, but not membrane curvature, causes a corresponding response in the fusion kinetics and fusion protein stoichiometry. Thus, the main free energy barrier to lipid mixing by influenza virus is controlled by membrane deformability and not the initial membrane curvature.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
24
|
Immunopathology of Zika virus infection. Adv Virus Res 2020; 107:223-246. [PMID: 32711730 DOI: 10.1016/bs.aivir.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus of the flavivirus genus in the Flaviviridae family. Flaviviruses are single-stranded, positive-sense RNA viruses that have been responsible for numerous human epidemics. Notable flaviviruses include mosquito-borne viruses such as yellow fever virus (YFV), Dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), as well as tick-borne viruses including Powassan virus (POWV) and tick-borne encephalitis virus (TBEV). Despite having been relatively obscure until the past decade, ZIKV has become a major global health concern, and is a topic of active research following multiple outbreaks across the globe. Here, we discuss ZIKV pathogenesis and the associated immunopathology, as well as advances in research, therapies, and vaccines developed using models of ZIKV pathogenesis.
Collapse
|
25
|
Delaveris CS, Webster ER, Banik SM, Boxer SG, Bertozzi CR. Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus. Proc Natl Acad Sci U S A 2020; 117:12643-12650. [PMID: 32457151 PMCID: PMC7293601 DOI: 10.1073/pnas.1921962117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic's conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
26
|
Target Membrane Cholesterol Modulates Single Influenza Virus Membrane Fusion Efficiency but Not Rate. Biophys J 2020; 118:2426-2433. [PMID: 32298636 DOI: 10.1016/j.bpj.2020.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Host lipid composition influences many stages of the influenza A virus (IAV) entry process, including initial binding of IAV to sialylated glycans, fusion between the viral envelope and the host membrane, and the formation of a fusion pore through which the viral genome is transferred into a target cell. In particular, target membrane cholesterol has been shown to preferentially associate with virus receptors and alter physical properties of the membrane like fluidity and curvature. These properties affect both IAV binding and fusion, which makes it difficult to isolate the role of cholesterol in IAV fusion from receptor binding effects. Here, we develop a fusion assay that uses synthetic DNA-lipid conjugates as surrogate viral receptors to tether virions to target vesicles. To avoid the possibly perturbative effect of adding a self-quenched concentration of dye-labeled lipids to the viral membrane, we tether virions to lipid-labeled target vesicles and use fluorescence microscopy to detect individual, pH-triggered IAV membrane fusion events. Through this approach, we find that cholesterol in the target membrane enhances the efficiency of single-particle IAV lipid mixing, whereas the rate of lipid mixing is independent of cholesterol composition. We also find that the single-particle kinetics of influenza lipid mixing to target membranes with different cholesterol compositions is independent of receptor binding, suggesting that cholesterol-mediated spatial clustering of viral receptors within the target membrane does not significantly affect IAV hemifusion. These results are consistent with the hypothesis that target membrane cholesterol increases lipid mixing efficiency by altering host membrane curvature.
Collapse
|
27
|
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.
Collapse
|
28
|
Rawle RJ, Villamil Giraldo AM, Boxer SG, Kasson PM. Detecting and Controlling Dye Effects in Single-Virus Fusion Experiments. Biophys J 2019; 117:445-452. [PMID: 31326109 DOI: 10.1016/j.bpj.2019.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
Fluorescent dye-dequenching assays provide a powerful and versatile means to monitor membrane fusion events. They have been used in bulk assays, for measuring single events in live cells, and for detailed analysis of fusion kinetics for liposomal, viral, and cellular fusion processes; however, the dyes used also have the potential to perturb membrane fusion. Here, using single-virus measurements of influenza membrane fusion, we show that fluorescent membrane probes can alter both the efficiency and the kinetics of lipid mixing in a dye- and illumination-dependent manner. R18, a dye that is commonly used to monitor lipid mixing between membranes, is particularly prone to these effects, whereas Texas Red is somewhat less sensitive. R18 further undergoes photoconjugation to viral proteins in an illumination-dependent manner that correlates with its inactivation of viral fusion. These results demonstrate how fluorescent probes can perturb measurements of biological activity and provide both data and a method for determining minimally perturbative measurement conditions.
Collapse
Affiliation(s)
- Robert J Rawle
- Departments of Molecular Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California
| | - Peter M Kasson
- Departments of Molecular Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Abstract
BACKGROUND The flaviviridae family comprises single-stranded RNA viruses that enter cells via clathrin-mediated pH-dependent endocytosis. Although the initial events of the virus entry have been already identified, data regarding intracellular virus trafficking and delivery to the replication site are limited. The purpose of this study was to map the transport route of Zika virus and to identify the fusion site within the endosomal compartment. METHODS Tracking of viral particles in the cell was carried out with confocal microscopy. Immunostaining of two structural proteins of Zika virus enabled precise mapping of the route of the ribonucleocapsid and the envelope and, consequently, mapping the fusion site in the endosomal compartment. The results were verified using RNAi silencing and chemical inhibitors. RESULTS After endocytic internalization, Zika virus is trafficked through the endosomal compartment to fuse in late endosomes. Inhibition of endosome acidification using bafilomycin A1 hampers the infection, as the fusion is inhibited; instead, the virus is transported to late compartments where it undergoes proteolytic degradation. The degradation products are ejected from the cell via slow recycling vesicles. Surprisingly, NH4Cl, which is also believed to block endosome acidification, shows a very different mode of action. In the presence of this basic compound, the endocytic hub is reprogrammed. Zika virus-containing vesicles never reach the late stage, but are rapidly trafficked to the plasma membrane via a fast recycling pathway after the clathrin-mediated endocytosis. Further, we also noted that, similarly as other members of the flaviviridae family, Zika virus undergoes furin- or furin-like-dependent activation during late steps of infection, while serine or cysteine proteases are not required for Zika virus maturation or entry. CONCLUSIONS Zika virus fusion occurs in late endosomes and is pH-dependent. These results broaden our understanding of Zika virus intracellular trafficking and may in future allow for development of novel treatment strategies. Further, we identified a novel mode of action for agents commonly used in studies of virus entry. Schematic representation of differences in ZIKV trafficking in the presence of Baf A1 and NH4Cl.
Collapse
|
30
|
Rinkenberger N, Schoggins JW. Comparative analysis of viral entry for Asian and African lineages of Zika virus. Virology 2019; 533:59-67. [PMID: 31112915 DOI: 10.1016/j.virol.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is an emerging pathogen with global health and economic impacts. ZIKV circulates as two major lineages, Asian or African. The Asian lineage has recently been associated with significant disease in humans. Numerous studies have revealed differences between African and Asian ZIKV strains with respect to cellular infectivity, pathogenesis, and immune activation. Less is known about the mechanism of ZIKV entry and whether viral entry differs between strains. Here, we characterized ZIKV entry with two Asian and two African strains. All viruses exhibited a requirement for clathrin-mediated endocytosis and Rab5a function. Additionally, all ZIKV strains tested were sensitive to pH in the range of 6.5-6.1 and were reliant on endosomal acidification for infection. Finally, we provide direct evidence that ZIKV primarily fuses with late endosomes. These findings contribute new insight into the ZIKV entry process and suggest that divergent ZIKV strains enter cells in a highly conserved manner.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
31
|
Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res 2019; 164:147-153. [PMID: 30771406 DOI: 10.1016/j.antiviral.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
The recent emergence of Zika virus, a mosquito-borne flavivirus, in the Americas has shed light on the severe neurological diseases associated with infection, notably congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Despite the recent focus on Zika virus, there are currently no approved vaccines or antiviral therapies available to treat or prevent infection. In this study we established a competitive amplified luminescent proximity homogeneous assay (ALPHAscreen) to identify small molecule inhibitors targeting the envelope protein of Zika virus (Zika E). We utilized this assay to screen two libraries of nearly 27,000 compounds and identified seven novel inhibitors of Zika E. Characterization of these primary screening leads demonstrated that inhibition of Zika virus occurs at non-cytotoxic concentrations for all seven lead compounds. In addition, we found that all seven lead compounds have potent activity against the closely related dengue virus 2 but not vesicular stomatitis virus, an unrelated enveloped virus. Biochemical experiments indicate that these compounds act by preventing E-mediated membrane fusion. This work highlights a new method for the discovery and optimization of direct-acting antivirals targeting the E protein of Zika and other flaviviruses.
Collapse
|
32
|
Van Vlack ER, Seeliger JC. Acid Trip: Zika Virus Goes Off-Pathway during pH-Triggered Membrane Fusion. ACS CENTRAL SCIENCE 2018; 4:1454-1456. [PMID: 30555896 PMCID: PMC6276282 DOI: 10.1021/acscentsci.8b00706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|