1
|
Bonnassieux S, Pandya R, Skiba DA, Degoulange D, Petit D, Seem P, Cowburn RP, Gallant BM, Grimaud A. Revisiting the driving force inducing phase separation in PEG-phosphate aqueous biphasic systems. Faraday Discuss 2024; 253:181-192. [PMID: 39086358 DOI: 10.1039/d4fd00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Liquid phase separation using aqueous biphasic systems (ABS) is widely used in industrial processes for the extraction, separation and purification of macromolecules. Using water as the single solvent, a wide variety of solutes have been used to induce phase separation including polymers, ionic liquids or salts. For each system, polymer-polymer, polymer-ionic liquid, polymer-salt or salt-salt, different driving forces were proposed to induce phase separation. Specifically, for polymer-salt systems, a difference in solvation structure between the polymer-rich and the salt-rich was proposed, while other reports suggested that a large change in enthalpy and entropy accompanied the phase separation. Here, we reinvestigated the PEG/K2HPO4/H2O systems using a combination of liquid-phase nuclear magnetic resonance (NMR) and high-resolution Raman spectroscopies, coupled with injection microcalorimetry. Both NMR and Raman reveal a decreased water concentration in the PEG-rich phase, with nonetheless no significant differences observed for both 1H chemical shift or OH stretching vibrations. Hence, both PEG- and salt-rich phases exhibit similar water solvation properties, which is thus not the driving force for phase separation. Furthermore, NMR reveals that PEG interacts with salt ions in the PEG-rich solution, inducing a downfield shift with increasing salt concentration. Injection microcalorimetry measurements were carried out to investigate any effect due to enthalpy change during mixing. Nevertheless, these measurements indicate very small enthalpy changes when mixing PEG- and salt-rich solutions in comparison with that previously recorded for salt-salt systems or associated with mixing of two solvents. Hence, our study discards any large change of enthalpy as the origin for phase separation of PEG/K2HPO4 systems, in addition to large difference in solvation properties.
Collapse
Affiliation(s)
- Sophie Bonnassieux
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA.
| | - Raj Pandya
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Dhyllan Adan Skiba
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Damien Degoulange
- Chimie du Solide et de l'Energie, Collège de France, UMR 8260, 75231 Paris Cedex 05, France
- Sorbonne Université, 75006 Paris, France
| | - Dorothée Petit
- Durham Magneto Optics Ltd, Church Road, Toft, Cambridge CB23 2RF, UK
| | - Peter Seem
- Durham Magneto Optics Ltd, Church Road, Toft, Cambridge CB23 2RF, UK
| | - Russel P Cowburn
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
- Durham Magneto Optics Ltd, Church Road, Toft, Cambridge CB23 2RF, UK
| | - Betar M Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexis Grimaud
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
2
|
Wood HO, Burnett HM, Dryfe RAW, Carbone P. Stability and structure of the aqueous LiTFSI-LiCl interface. Faraday Discuss 2024; 253:212-232. [PMID: 39023276 DOI: 10.1039/d4fd00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
It has recently been demonstrated that aqueous lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium chloride (LiCl) solutions can form stable liquid-liquid biphasic systems when both electrolyte phases have sufficiently high concentrations. In this work, we combine molecular dynamics simulations and experimental analysis to investigate what drives the formation of the interface and how the interfacial molecular structure correlates with its thermodynamic stability. We observe that at the liquid-vapour interface, TFSI- anions exhibit surfactant-like properties, leading to a reduction in surface tension and an increase in interfacial thickness. In contrast, the interfacial stability of the LiTFSI-LiCl biphasic systems increases with the concentration of both salts, as evidenced by the increasing surface tension and decreasing interfacial thickness. The opposing effects that the ionic concentration has on the thermodynamic stability of the different interfaces are linked to the anions' interfacial adsorption/desorption, which in turn affects the number and strength of water-water hydrogen bonds, the interfacial molecular structure and the diffusion of cations across the interface. Finally, calculations and experiments indicate that the liquid-liquid separation is driven primarily by the concentration of LiCl, and is the result of a 'salting out' effect.
Collapse
Affiliation(s)
- Hannah O Wood
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Hannah M Burnett
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| | - Paola Carbone
- Department of Chemistry, University of Manchester, Oxford Rd, Manchester, UK.
| |
Collapse
|
3
|
Wang Z, Zhou J, Ji H, Liu J, Zhou Y, Qian T, Yan C. Principles and Design of Biphasic Self-Stratifying Batteries Toward Next-Generation Energy Storage. Angew Chem Int Ed Engl 2024; 63:e202320258. [PMID: 38456300 DOI: 10.1002/anie.202320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Large-scale energy storage devices play pivotal roles in effectively harvesting and utilizing green renewable energies (such as solar and wind energy) with capricious nature. Biphasic self-stratifying batteries (BSBs) have emerged as a promising alternative for grid energy storage owing to their membraneless architecture and innovative battery design philosophy, which holds promise for enhancing the overall performance of the energy storage system and reducing operation and maintenance costs. This minireview aims to provide a timely review of such emerging energy storage technology, including its fundamental design principles, existing categories, and prototype architectures. The challenges and opportunities of this undergoing research topic will also be systematically highlighted and discussed to provide guidance for the subsequent R&D of superior BSBs while conducive to bridging the gap for their future practical application.
Collapse
Affiliation(s)
- Zhenkang Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Jinqiu Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yang Zhou
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Tao Qian
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Chenglin Yan
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
4
|
Li X, Benstead M, Peeters N, Binnemans K. Recycling of metals from LiFePO 4 battery cathode material by using ionic liquid based-aqueous biphasic systems. RSC Adv 2024; 14:9262-9272. [PMID: 38505392 PMCID: PMC10949915 DOI: 10.1039/d4ra00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Lithium-ion batteries are essential for electric vehicles and energy storage devices. With the increasing demand for their production and the concomitant surge in waste generation, the need for an efficient and environmentally friendly recycling process has become imperative. This work presents a new approach for recycling of metals from the LiFePO4 (LFP) cathode material. The cathode material was first leached by a HCl solution without an oxidizing agent. Subsequently, an ionic-liquid-based aqueous biphasic system (IL-based ABS) was used for the separation of lithium and iron from leachate solutions, followed by a precipitation process. The influence of the acid concentration, solid-to-liquid ratio and leaching time on the leaching yield was investigated. UV-vis absorption spectra revealed the presence of mixed-valent iron in the leachate, with 83 ± 1% Fe(ii) and 17 ± 1% Fe(iii). The ABS systems comprised tributyltetradecylphosphonium chloride [P44414]Cl and a salting-out agent (HCl or NaCl). The extraction percentage of iron reached 90% and less than 1% of lithium was extracted under the studied optimal conditions. Further enhancement of iron extraction, reaching 98%, was achieved via a two-stage cross-current extraction process. Iron was precipitated from the loaded IL phase with an efficiency of 97% as Fe(OH)2 and Fe(OH)3, using an aqueous ammonia solution. Lithium was precipitated as Li3PO4 with a lithium purity of 99.5% by adding K3PO4 solution. The ionic liquid used in the process was efficiently regenerated and used in four extraction cycles with no activity decline, with an extraction percentage of 90% of iron in each cycle.
Collapse
Affiliation(s)
- Xiaohua Li
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| | - Maia Benstead
- Durham University, Department of Chemistry Durham DH1 3LE UK
| | - Nand Peeters
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P. O. Box 2404 B-3001 Leuven Belgium
| |
Collapse
|
5
|
Jorge AMS, Silva GMC, Coutinho JAP, Pereira JFB. Unravelling the molecular interactions behind the formation of PEG/PPG aqueous two-phase systems. Phys Chem Chem Phys 2024; 26:7308-7317. [PMID: 38351888 DOI: 10.1039/d3cp05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The understanding of molecular interactions that control phase separation in polymer/polymer aqueous two-phase systems (ATPS) has been a subject of debate up to this day. In light of this, we set out to investigate the molecular interactions occurring in ternary mixtures composed of polyethylene glycol (PEG600), polypropylene glycol (PPG400) and water. The ternary phase diagram was plotted at two temperatures (298 K and 323 K), revealing a transition from a type 0 to a type I diagram. Molecular dynamics (MD) simulations were performed to elucidate the polymer-polymer and polymer-water interactions occurring at different temperatures and water concentrations. COnductor-like Screening Model for Realistic Solvents (COSMO-RS) was used to assess the thermodynamic properties of the polymer-water binary mixtures and their correlation with ATPS formation. The MD simulations clearly demonstrate the effect of segregation/separation with increasing water content and temperature, highlighting a significant reduction in PPG-water interactions compared to PEG-water counterparts. Polymer-water interactions were identified as those controlling the phase separation mechanism, and the thermodynamic properties determined with COSMO-RS for the polymer-water binary systems further support this view.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Gonçalo M C Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - João A P Coutinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Jorge F B Pereira
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
6
|
Brown J, Forero-Saboya J, Baptiste B, Karlsmo M, Rousse G, Grimaud A. A guanidium salt as a chaotropic agent for aqueous battery electrolytes. Chem Commun (Camb) 2023; 59:12266-12269. [PMID: 37750815 DOI: 10.1039/d3cc03769j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
This study investigates a salt design principle for aqueous battery electrolytes by combining chaotropic ions, guanidium cations (Gdm) and bis(trifluoromethanesulfonyl)imide anions (TFSI), forming GdmTFSI. This salt's crystal structure was solved via single-crystal X-ray diffraction and characterized using Fourier-transform infrared spectroscopy. Study reveals that GdmTFSI salt disrupts the hydrogen bonding network of aqueous solutions, impacting water reactivity at electrochemical interfaces.
Collapse
Affiliation(s)
- John Brown
- Chimie du Solide et de l'Energie (CSE), Collège de France, UMR 8260, 75231 Paris Cedex 05, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France
- ALISTORE-ERI, CNRS FR 3104, Hub de I'Energie, 80039 Amiens Cedex, France
| | - Juan Forero-Saboya
- Chimie du Solide et de l'Energie (CSE), Collège de France, UMR 8260, 75231 Paris Cedex 05, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France
| | - Benoît Baptiste
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS - Sorbonne Université - IRD - MNHN, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Martin Karlsmo
- Department of Physics, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Gwenaëlle Rousse
- Chimie du Solide et de l'Energie (CSE), Collège de France, UMR 8260, 75231 Paris Cedex 05, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie (CSE), Collège de France, UMR 8260, 75231 Paris Cedex 05, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
7
|
Degoulange D, Pandya R, Deschamps M, Skiba D, Gallant B, Gigan S, de Aguiar H, Grimaud A. Direct imaging of micrometer-thick interfaces in salt-salt aqueous biphasic systems. Proc Natl Acad Sci U S A 2023; 120:e2220662120. [PMID: 37068232 PMCID: PMC10151592 DOI: 10.1073/pnas.2220662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.
Collapse
Affiliation(s)
- Damien Degoulange
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
| | - Raj Pandya
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Michael Deschamps
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- CNRS, Conditions Extrêmes et Matériaux : Haute Température et Irradiation, UPR3079, Université d'Orléans,45071Orléans, France
| | - Dhyllan A. Skiba
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Betar M. Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Hilton B. de Aguiar
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA02467
| |
Collapse
|
8
|
Wang Z, Ji H, Zhou J, Zheng Y, Liu J, Qian T, Yan C. Exploiting nonaqueous self-stratified electrolyte systems toward large-scale energy storage. Nat Commun 2023; 14:2267. [PMID: 37081028 PMCID: PMC10119102 DOI: 10.1038/s41467-023-37995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Biphasic self-stratified batteries (BSBs) provide a new direction in battery philosophy for large-scale energy storage, which successfully reduces the cost and simplifies the architecture of redox flow batteries. However, current aqueous BSBs have intrinsic limits on the selection range of electrode materials and energy density due to the narrow electrochemical window of water. Thus, herein, we develop nonaqueous BSBs based on Li-S chemistry, which deliver an almost quadruple increase in energy density of 88.5 Wh L-1 as compared with the existing aqueous BSBs systems. In situ spectral characterization and molecular dynamics simulations jointly elucidate that while ensuring the mass transfer of Li+, the positive redox species are strictly confined to the bottom-phase electrolyte. This proof-of-concept of Li-S BSBs pushes the energy densities of BSBs and provides an idea to realize massive-scale energy storage with large capacitance.
Collapse
Affiliation(s)
- Zhenkang Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Jinqiu Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
| | - Yiwei Zheng
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
| | - Tao Qian
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China.
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China.
| |
Collapse
|
9
|
Chubak I, Alon L, Silletta EV, Madelin G, Jerschow A, Rotenberg B. Quadrupolar 23Na + NMR relaxation as a probe of subpicosecond collective dynamics in aqueous electrolyte solutions. Nat Commun 2023; 14:84. [PMID: 36604414 PMCID: PMC9816157 DOI: 10.1038/s41467-022-35695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Nuclear magnetic resonance relaxometry represents a powerful tool for extracting dynamic information. Yet, obtaining links to molecular motion is challenging for many ions that relax through the quadrupolar mechanism, which is mediated by electric field gradient fluctuations and lacks a detailed microscopic description. For sodium ions in aqueous electrolytes, we combine ab initio calculations to account for electron cloud effects with classical molecular dynamics to sample long-time fluctuations, and obtain relaxation rates in good agreement with experiments over broad concentration and temperature ranges. We demonstrate that quadrupolar nuclear relaxation is sensitive to subpicosecond dynamics not captured by previous models based on water reorientation or cluster rotation. While ions affect the overall water retardation, experimental trends are mainly explained by dynamics in the first two solvation shells of sodium, which contain mostly water. This work thus paves the way to the quantitative understanding of quadrupolar relaxation in electrolyte and bioelectrolyte systems.
Collapse
Affiliation(s)
- Iurii Chubak
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005, Paris, France
| | - Leeor Alon
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Emilia V Silletta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Medina Allende s/n, X5000HUA, Córdoba, Argentina
- Instituto de Física Enrique Gaviola, CONICET, Medina Allende s/n, X5000HUA, Córdoba, Argentina
| | - Guillaume Madelin
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Alexej Jerschow
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY, 10003, USA.
| | - Benjamin Rotenberg
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005, Paris, France.
| |
Collapse
|
10
|
Sinoimeri E, Pescheux AC, Guillotte I, Cognard J, Svecova L, Billard I. Fate of metal ions in PEG-400/Na2SO4/H2O aqueous biphasic system: from eviction to extraction towards the upper polymer-rich phase. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Worrall SD, Wang J, Najdanovic-Visak V. Aqueous biphasic systems based on ethyl lactate: Molecular interactions and modelling. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2142575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Stephen D. Worrall
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Jiawei Wang
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Vesna Najdanovic-Visak
- Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK
| |
Collapse
|
12
|
Simulations of phase transitions and capacitance, of simple ionic fluids in porous electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Factors driving metal partition in ionic liquid-based acidic aqueous biphasic systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Zhang J, Huang L, Fang T, Du F, Xiang Z, Zhang J, Chen R, Peljo P, Ouyang G, Deng H. Discrete Events of Ionosomes at the Water/Toluene Micro‐Interface. ChemElectroChem 2022. [DOI: 10.1002/celc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingyan Zhang
- Sun Yat-Sen University Chemical Engineering and Technology CHINA
| | - Linhan Huang
- Sun Yat-Sen University Chemical Engineering and Technology CHINA
| | - Taoxiong Fang
- Sun Yat-Sen University School of Chemical Engineering and Technology CHINA
| | - Feng Du
- Sun Yat-Sen University Chemical Engineering and Technology CHINA
| | - Zhipeng Xiang
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Jingcheng Zhang
- Sun Yat-Sen University Chemical Engineering and Technology CHINA
| | - Ran Chen
- Southeast University Chemistry and Chemical Engineering CHINA
| | - Pekka Peljo
- University of Turku: Turun Yliopisto Mechanical and Materials Engineering FINLAND
| | - Gangfeng Ouyang
- Sun Yat-Sen University Chemical Engineering and Technology CHINA
| | - Haiqiang Deng
- Sun Yat-Sen University School of Chemical Engineering and Technology Room 203, No. 7 Building, Haibin Honglou Road 519082 Zhuhai CHINA
| |
Collapse
|
15
|
Li X, van de Ven JJ, Li Z, Binnemans K. Separation of Rare Earths and Transition Metals Using Ionic-Liquid-Based Aqueous Biphasic Systems. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohua Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | | | - Zheng Li
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| |
Collapse
|
16
|
Dubouis N, Marchandier T, Rousse G, Marchini F, Fauth F, Avdeev M, Iadecola A, Porcheron B, Deschamps M, Tarascon JM, Grimaud A. Extending insertion electrochemistry to soluble layered halides with superconcentrated electrolytes. NATURE MATERIALS 2021; 20:1545-1550. [PMID: 34326505 DOI: 10.1038/s41563-021-01060-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.
Collapse
Affiliation(s)
- Nicolas Dubouis
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France
- Sorbonne Université, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
| | - Thomas Marchandier
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France
- Sorbonne Université, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
| | - Gwenaelle Rousse
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France
- Sorbonne Université, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
| | - Florencia Marchini
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France
- Sorbonne Université, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
| | | | - Maxim Avdeev
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | | | - Benjamin Porcheron
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS, Université d'Orléans, Orléans, France
| | - Michael Deschamps
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS, Université d'Orléans, Orléans, France
| | - Jean-Marie Tarascon
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France.
- Sorbonne Université, Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France.
| | - Alexis Grimaud
- Chaire de Chimie du Solide et de l'Energie, Collège de France, Paris, France.
- Sorbonne Université, Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie, Amiens, France.
| |
Collapse
|
17
|
Špadina M, Dufrêche JF, Pellet-Rostaing S, Marčelja S, Zemb T. Molecular Forces in Liquid-Liquid Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10637-10656. [PMID: 34251218 DOI: 10.1021/acs.langmuir.1c00673] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.
Collapse
Affiliation(s)
- Mario Špadina
- Group for Computational Life Sciences, Rud̵er Bošković Institute, Division of Physical Chemistry, 10000 Zagreb, Croatia
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | - Stjepan Marčelja
- Research School of Physics, The Australian National University, Canberra, Australia
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule, France
| |
Collapse
|
18
|
Degoulange D, Dubouis N, Grimaud A. Toward the understanding of water-in-salt electrolytes: Individual ion activities and liquid junction potentials in highly concentrated aqueous solutions. J Chem Phys 2021; 155:064701. [PMID: 34391353 DOI: 10.1063/5.0058506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Highly concentrated electrolytes were recently proposed to improve the performances of aqueous electrochemical systems by delaying the water splitting and increasing the operating voltage for battery applications. While advances were made regarding their implementation in practical devices, debate exists regarding the physical origin for the delayed water reduction occurring at the electrode/electrolyte interface. Evidently, one difficulty resides in our lack of knowledge regarding ion activity arising from this novel class of electrolytes, which is necessary to estimate the Nernst potential of associated redox reactions, such as Li+ intercalation or the hydrogen evolution reaction. In this work, we first measured the potential shift of electrodes selective to Li+, H+, or Zn2+ ions from diluted to highly concentrated regimes in LiCl or LiTFSI solutions. Observing similar shifts for these different cations and environments, we establish that shifts in redox potentials from diluted to highly concentrated regimes originate in large from an increased junction potential, which is dependent on the ion activity coefficients that increase with the concentration. While our study shows that single ion activity coefficients, unlike mean ion activity coefficients, cannot be captured by any electrochemical means, we demonstrate that the proton concentration increases by one to two orders of magnitude from 1 to 15-20 mol kg-1 solutions. Combined with the increased activity coefficients, this phenomenon increases the activity of protons and thus increases the pH of highly concentrated solutions which appears acidic.
Collapse
Affiliation(s)
- Damien Degoulange
- Chimie du Solide et de l'Energie, Collège de France, UMR 8260, 75231 Paris Cedex 05, France
| | - Nicolas Dubouis
- Chimie du Solide et de l'Energie, Collège de France, UMR 8260, 75231 Paris Cedex 05, France
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie, Collège de France, UMR 8260, 75231 Paris Cedex 05, France
| |
Collapse
|
19
|
Greco R, Lloret V, Rivero-Crespo MÁ, Hirsch A, Doménech-Carbó A, Abellán G, Leyva-Pérez A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS AU 2021; 1:786-794. [PMID: 34240079 PMCID: PMC8243323 DOI: 10.1021/jacsau.1c00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.
Collapse
Affiliation(s)
- Rossella Greco
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicent Lloret
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Miguel Ángel Rivero-Crespo
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Universitat
de València, Dr.
Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Abellán
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Valencia, Spain
- . Phone: +34963544074. Fax: +34963543273
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
- . Phone: +34963877800. Fax: +349638 77809
| |
Collapse
|
20
|
Marion S, Vučemilović-Alagić N, Špadina M, Radenović A, Smith AS. From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100777. [PMID: 33955694 DOI: 10.1002/smll.202100777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Nataša Vučemilović-Alagić
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mario Špadina
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
| | - Aleksandra Radenović
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
21
|
Dubouis N, France-Lanord A, Brige A, Salanne M, Grimaud A. Anion Specific Effects Drive the Formation of Li-Salt Based Aqueous Biphasic Systems. J Phys Chem B 2021; 125:5365-5372. [DOI: 10.1021/acs.jpcb.1c01750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicolas Dubouis
- Chimie du Solide et de l’Energie, Collège de France, UMR 8260, 75231 Cedex 05 Paris, France
- Sorbonne Université, 75006 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 33 rue Saint Leu, 80039 Cedex Amiens, France
| | - Arthur France-Lanord
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 33 rue Saint Leu, 80039 Cedex Amiens, France
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Amandine Brige
- Chimie du Solide et de l’Energie, Collège de France, UMR 8260, 75231 Cedex 05 Paris, France
- Département de Chimie, Ecole normale supérieure, 75005 Paris, France
| | - Mathieu Salanne
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 33 rue Saint Leu, 80039 Cedex Amiens, France
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l’Energie, Collège de France, UMR 8260, 75231 Cedex 05 Paris, France
- Sorbonne Université, 75006 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, 33 rue Saint Leu, 80039 Cedex Amiens, France
| |
Collapse
|
22
|
Demirelli M, Peyre V, Sirieix-Plénet J, Malikova N, Fresnais J. Influence of polycation/cation competition on the aggregation threshold of magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Serva A, Dubouis N, Grimaud A, Salanne M. Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. Acc Chem Res 2021; 54:1034-1042. [PMID: 33530686 PMCID: PMC7944480 DOI: 10.1021/acs.accounts.0c00795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/17/2022]
Abstract
ConspectusThe recent discovery of "water-in-salt" electrolytes has spurred a rebirth of research on aqueous batteries. Most of the attention has been focused on the formulation of salts enabling the electrochemical window to be expanded as much as possible, well beyond the 1.23 V allowed by thermodynamics in water. This approach has led to critical successes, with devices operating at voltages of up to 4 V. These efforts were accompanied by fundamental studies aiming at understanding water speciation and its link with the bulk and interfacial properties of water-in-salt electrolytes. This speciation was found to differ markedly from that in conventional aqueous solutions since most water molecules are involved in the solvation of the cationic species (in general Li+) and thus cannot form their usual hydrogen-bonding network. Instead, it is the anions that tend to self-aggregate in nanodomains and dictate the interfacial and transport properties of the electrolyte. This particular speciation drastically alters the presence and reactivity of the water molecules at electrified interfaces, which enlarges the electrochemical windows of these aqueous electrolytes.Thanks to this fundamental understanding, a second very active lead was recently followed, which consists of using a scarce amount of water in nonaqueous electrolytes in order to control the interfacial properties. Following this path, it was proposed to use an organic solvent such as acetonitrile as a confinement matrix for water. Tuning the salt/water ratio in such systems leads to a whole family of systems that can be used to determine the reactivity of water and control the potential at which the hydrogen evolution reaction occurs. Put together, all of these efforts allow a shift of our view of the water molecule from a passive solvent to a reactant involved in many distinct fields ranging from electrochemical energy storage to (electro)catalysis.Combining spectroscopic and electrochemical techniques with molecular dynamics simulations, we have observed very interesting chemical phenomena such as immiscibility between two aqueous phases, specific adsorption properties of water molecules that strongly affect their reactivity, and complex diffusive mechanisms due to the formation of anionic and aqueous nanodomains.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne
Université, CNRS, Physico-chimie des Electrolytes et Nanosystémes
Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Nicolas Dubouis
- Chimie
du Solide et de l’Energie, Collège
de France, 11 Place Marcelin Berthelot, 75231 Paris, France
- Sorbonne
Université, Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Alexis Grimaud
- Sorbonne
Université, Paris, France
- Chimie
du Solide et de l’Energie, Collège
de France, Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-chimie des Electrolytes et Nanosystémes
Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), Amiens, France
| |
Collapse
|
24
|
Ah-Lung G, Flamme B, Ghamouss F, Maréchal M, Jacquemin J. Guidelines for designing highly concentrated electrolytes for low temperature applications. Chem Commun (Camb) 2020; 56:9830-9833. [PMID: 32716427 DOI: 10.1039/d0cc03963b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO3 that is able to electrochemically cycle down to -23 °C.
Collapse
Affiliation(s)
- Guillaume Ah-Lung
- Laboratoire PCM2E, Université de Tours, Parc de Grandmont, 37200 Tours, France.
| | - Benjamin Flamme
- Laboratoire PCM2E, Université de Tours, Parc de Grandmont, 37200 Tours, France.
| | - Fouad Ghamouss
- Laboratoire PCM2E, Université de Tours, Parc de Grandmont, 37200 Tours, France. and Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Manuel Maréchal
- Univ. Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Johan Jacquemin
- Laboratoire PCM2E, Université de Tours, Parc de Grandmont, 37200 Tours, France. and Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
25
|
Chen M, Feng G, Qiao R. Water-in-salt electrolytes: An interfacial perspective. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Coles SW, Park C, Nikam R, Kanduč M, Dzubiella J, Rotenberg B. Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2020; 124:1778-1786. [PMID: 32031810 DOI: 10.1021/acs.jpcb.9b10542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the correlation length of the charge-charge pair correlations in concentrated electrolyte solutions by means of all-atom, explicit-solvent molecular dynamics simulations. We investigate LiCl and NaI in water, which constitute highly soluble, prototypical salts for experiments, as well as two more complex, molecular electrolyte systems of lithium bis(trifluoromethane)sulfonimide (LiTFSI), a salt commonly employed in electrochemical storage systems, in water, and in an organic solvent mixture of dimethoxyethane and dioxolane. Our simulations support the recent experimental observations as well as theoretical predictions of a nonmonotonic behavior of the correlation length with increasing salt concentration. We observe a Debye-Hückel like regime at low concentration, followed by a minimum reached when d/λD ≃ 1, where λD is the Debye correlation length and d is the effective ionic diameter, and an increasing correlation length with salt concentration in very concentrated electrolytes. As in the experiments, we find that the screening length in the concentrated regime follows a universal scaling law as a function d/λD for all studied salts. However, the scaling exponent is significantly lower than the experimentally measured one and lies in the range of the theoretical predictions based on much simpler electrolyte models.
Collapse
Affiliation(s)
- Samuel W Coles
- Sorbonne Université, CNRS, Physicochimie des électrolytes et Nanosystèmes Interfaciaux, UMR PHENIX, 4 pl. Jussieu, F-75005 Paris, France
| | - Chanbum Park
- Research Group for Simulations of Energy Materials, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Rohit Nikam
- Research Group for Simulations of Energy Materials, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Matej Kanduč
- Research Group for Simulations of Energy Materials, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des électrolytes et Nanosystèmes Interfaciaux, UMR PHENIX, F-75005 Paris, France
| |
Collapse
|
27
|
Li Z, Bouchal R, Mendez-Morales T, Rollet AL, Rizzi C, Le Vot S, Favier F, Rotenberg B, Borodin O, Fontaine O, Salanne M. Transport Properties of Li-TFSI Water-in-Salt Electrolytes. J Phys Chem B 2019; 123:10514-10521. [PMID: 31726827 DOI: 10.1021/acs.jpcb.9b08961] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Water-in-salts are a new family of electrolytes that may allow the development of aqueous Li-ion batteries. They have a structure that is reminiscent of ionic liquids, and they are characterized by a high concentration of ionic species. In this work, we study their transport properties and how they evolve with concentration by using molecular dynamic simulations. We first focus on the choice of the force field. By comparing the simulated viscosities and self-diffusion coefficients with experimental measurements, we select a set of parameters that reproduces well the transport properties. We then use the selected force field to study in detail the variations of the self and collective diffusivities of all the species as well as the transport number of the lithium ion. We show that correlations between ions and water play an important role over the whole concentration range. In the water-in-salt regime, the anions form a percolating network that reduces the cation-anion correlations and leads to rather large values for the transport number compared to other standard electrolytes.
Collapse
Affiliation(s)
- Z Li
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,Maison de la Simulation, CEA, CNRS , Université Paris-Sud , UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| | - R Bouchal
- FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France.,Institut Charles Gerhardt Montpellier , Université Montpellier , UMR 5253, CC 1701, Place Eugène Bataillon, 34095 Montpellier , Cedex 5, France
| | - T Mendez-Morales
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,Maison de la Simulation, CEA, CNRS , Université Paris-Sud , UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| | - A-L Rollet
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| | - C Rizzi
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| | - S Le Vot
- FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France.,Institut Charles Gerhardt Montpellier , Université Montpellier , UMR 5253, CC 1701, Place Eugène Bataillon, 34095 Montpellier , Cedex 5, France
| | - F Favier
- FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France.,Institut Charles Gerhardt Montpellier , Université Montpellier , UMR 5253, CC 1701, Place Eugène Bataillon, 34095 Montpellier , Cedex 5, France
| | - B Rotenberg
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| | - O Borodin
- Joint Center for Energy Storage Research , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States.,Electrochemistry Branch, Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - O Fontaine
- FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France.,Institut Charles Gerhardt Montpellier , Université Montpellier , UMR 5253, CC 1701, Place Eugène Bataillon, 34095 Montpellier , Cedex 5, France
| | - M Salanne
- Sorbonne Universite ́, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS , PHENIX, F-75005 Paris , France.,Maison de la Simulation, CEA, CNRS , Université Paris-Sud , UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette , France.,FR CNRS 3459 , Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , 80039 Amiens , Cedex, France
| |
Collapse
|