1
|
Bonnell V, Zhang Y, Brown A, Horton J, Josling G, Chiu TP, Rohs R, Mahony S, Gordân R, Llinás M. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2024; 52:10161-10179. [PMID: 38966997 PMCID: PMC11417369 DOI: 10.1093/nar/gkae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.
Collapse
Affiliation(s)
- Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Alan S Brown
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Barbachowska M, Harivel T, Nicchi S, Danckaert A, Ghazarian M, Chiaravalli J, Buchrieser C, Rolando M, Arimondo PB. High Content Screening Assay of Inhibitors of the Legionella Pneumophila Histone Methyltransferase RomA in Infected Cells. Chembiochem 2024:e202400293. [PMID: 39252664 DOI: 10.1002/cbic.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Resistance to anti-microbial agents is a world-wide health threat. Thus, there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3 K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix (Perkin Elmer) confocal microscope, combined with Columbus software for automated image acquisition and analysis. H3 K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3 K14 methylation.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
- Université Paris Cité, Ecole Doctorale MTCI, Paris, 75006, France
- Pasteur-Paris University (PPU), Oxford International Doctoral program, Institut Pasteur, F-75015, Paris, France
| | - Thomas Harivel
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Sonia Nicchi
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne Danckaert
- UtechS PBI - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Marine Ghazarian
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Carmen Buchrieser
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Monica Rolando
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
| |
Collapse
|
3
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
Zheng M, Zhang M, Li H, Wu S, Zhao Y, Zhang J, Zhou Y, Jalloh MB, Zhang K, Chen L, Mi Z, Cui Y, Hou L. Rapid, sensitive, and convenient detection of Plasmodium falciparum infection based on CRISPR and its application in detection of asymptomatic infection. Acta Trop 2024; 249:107062. [PMID: 37923286 DOI: 10.1016/j.actatropica.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Rapid and convenient detection of the Plasmodium in clinically diagnosed individuals and asymptomatically infected populations is essential for global malaria eradication, especially in malaria-endemic African countries where medical equipment and professionals are relatively deficient. Here, we described a CRISPR-based diagnostic for the detection of Plasmodium falciparum, the deadliest and most prevalent species of malaria parasite in Africa, via lateral flow strip readout without the need of nucleic acid extraction. The assay exhibited 100% sensitivity on clinical samples (5 P falciparum) and significant consistency with qPCR test on asymptomatic infection samples (49 P falciparum and 51 non-P. falciparum, Kappa=0.839). An artemisinin-resistant P. falciparum strain and 4 other laboratory-cultured strains can also be detected through this assay, whereas no cross-reactivity with Plasmodium vivax was observed. A 0.001% parasitaemia (corresponding to ∼60 parasites/μL) below the "low parasite density" test threshold (200 parasites/µL) is detectable. Our study demonstrated that direct malaria detection using whole blood on the spot and the detection of both clinical and asymptomatic infections of P. falciparum are feasible. This method is expected to be employed for clinical testing and large-scale community screening in Africa and possibly other places, contributing to the accurate diagnosis and control of malaria.
Collapse
Affiliation(s)
- Minghao Zheng
- School of Medical Devices, Shenyang Pharmaceutical University; Beijing Institute of Biotechnology, Beijing, China
| | | | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Yunyue Zhou
- Beijing Institute of Biotechnology, Beijing, China; School of Basic Medical Sciences, Zhejiang University
| | - Mohamed Boie Jalloh
- Joint Medical Unit (34 Military Hospital), Republic of Sierra Leone Armed Forces, Wilberforce Barracks, Wilberforce Village, Freetown, Sierra Leone
| | - Kun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University
| | - Lina Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University.
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
5
|
Luo AP, Giannangelo C, Siddiqui G, Creek DJ. Promising antimalarial hits from phenotypic screens: a review of recently-described multi-stage actives and their modes of action. Front Cell Infect Microbiol 2023; 13:1308193. [PMID: 38162576 PMCID: PMC10757594 DOI: 10.3389/fcimb.2023.1308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Over the last two decades, global malaria cases caused by Plasmodium falciparum have declined due to the implementation of effective treatments and the use of insecticides. However, the COVID-19 pandemic caused major disruption in the timely delivery of medical goods and diverted public health resources, impairing malaria control. The emergence of resistance to all existing frontline antimalarials underpins an urgent need for new antimalarials with novel mechanisms of action. Furthermore, the need to reduce malaria transmission and/or prevent malaria infection has shifted the focus of antimalarial research towards the discovery of compounds that act beyond the symptomatic blood stage and also impact other parasite life cycle stages. Phenotypic screening has been responsible for the majority of new antimalarial lead compounds discovered over the past 10 years. This review describes recently reported novel antimalarial hits that target multiple parasite stages and were discovered by phenotypic screening during the COVID-19 pandemic. Their modes of action and targets in blood stage parasites are also discussed.
Collapse
Affiliation(s)
| | | | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
6
|
Reyser T, Paloque L, Nguyen M, Augereau JM, Fuchter MJ, Lopez M, Arimondo PB, Hassell-Hart S, Spencer J, Di Stefano L, Benoit-Vical F. Epidrugs as Promising Tools to Eliminate Plasmodium falciparum Artemisinin-Resistant and Quiescent Parasites. Pharmaceutics 2023; 15:2440. [PMID: 37896200 PMCID: PMC10610379 DOI: 10.3390/pharmaceutics15102440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs. Here, we set out to evaluate a selection of various epidrugs for their activity against quiescent parasites, to explore the possibility of using these compounds to counter artemisinin resistance. The 32 chosen epidrugs were first screened for their antiplasmodial activity and selectivity. We then demonstrated, thanks to the specific Quiescent-stage Survival Assay, that four epidrugs targeting both histone methylation or deacetylation as well as DNA methylation decrease the ability of artemisinin-resistant parasites to recover after artemisinin exposure. In the quest for novel antiplasmodial drugs with new modes of action, these results reinforce the therapeutic potential of epidrugs as antiplasmodial drugs especially in the context of artemisinin resistance.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM UMR 5247, 34293 Montpellier, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR 3523 CNRS, 75015 Paris, France
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QJ, UK
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QJ, UK
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| |
Collapse
|
7
|
Dobrescu I, Hammam E, Dziekan JM, Claës A, Halby L, Preiser P, Bozdech Z, Arimondo PB, Scherf A, Nardella F. Plasmodium falciparum Eukaryotic Translation Initiation Factor 3 is Stabilized by Quinazoline-Quinoline Bisubstrate Inhibitors. ACS Infect Dis 2023; 9:1257-1266. [PMID: 37216290 PMCID: PMC10262199 DOI: 10.1021/acsinfecdis.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 05/24/2023]
Abstract
Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.
Collapse
Affiliation(s)
- Irina Dobrescu
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Jerzy M. Dziekan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Aurélie Claës
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Peter Preiser
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Zbynek Bozdech
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Flore Nardella
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| |
Collapse
|
8
|
Nardella F, Dobrescu I, Hassan H, Rodrigues F, Thiberge S, Mancio-Silva L, Tafit A, Jallet C, Cadet-Daniel V, Goussin S, Lorthiois A, Menon Y, Molinier N, Pechalrieu D, Long C, Sautel F, Matondo M, Duchateau M, Médard G, Witkowski B, Scherf A, Halby L, Arimondo PB. Hemisynthetic alkaloids derived from trilobine are antimalarials with sustained activity in multidrug-resistant Plasmodium falciparum. iScience 2023; 26:105940. [PMID: 36718363 PMCID: PMC9883252 DOI: 10.1016/j.isci.2023.105940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.
Collapse
Affiliation(s)
- Flore Nardella
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Irina Dobrescu
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Haitham Hassan
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Fabien Rodrigues
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Sabine Thiberge
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France,Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Liliana Mancio-Silva
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Corinne Jallet
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Stéphane Goussin
- Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Audrey Lorthiois
- Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Yoann Menon
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Nicolas Molinier
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Dany Pechalrieu
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Christophe Long
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - François Sautel
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, Université de Paris-Cité, CNRS USR 2000, 28 rue du Dr Roux, 75015 Paris, France
| | - Magalie Duchateau
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, Université de Paris-Cité, CNRS USR 2000, 28 rue du Dr Roux, 75015 Paris, France
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, 85354 Freising, Germany
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Artur Scherf
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France,Corresponding author
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France,USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France,Corresponding author
| |
Collapse
|
9
|
Swale C, Bellini V, Bowler MW, Flore N, Brenier-Pinchart MP, Cannella D, Belmudes L, Mas C, Couté Y, Laurent F, Scherf A, Bougdour A, Hakimi MA. Altiratinib blocks Toxoplasma gondii and Plasmodium falciparum development by selectively targeting a spliceosome kinase. Sci Transl Med 2022; 14:eabn3231. [PMID: 35921477 DOI: 10.1126/scitranslmed.abn3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.
Collapse
Affiliation(s)
- Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nardella Flore
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Marie-Pierre Brenier-Pinchart
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 avenue des Martyrs, F-38042, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Fabrice Laurent
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, UMR1282 ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Artur Scherf
- Institut Pasteur, Université de Paris, Unité de Biologie des Interactions Hôte-Parasite, CNRS ERL 9195, INSERM U1201, F-75015 Paris, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
11
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
12
|
Ahmed‐Belkacem R, Debart F, Vasseur J. Bisubstrate Strategies to Target Methyltransferases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
15
|
Nardella F, Halby L, Dobrescu I, Viluma J, Bon C, Claes A, Cadet-Daniel V, Tafit A, Roesch C, Hammam E, Erdmann D, Mairet-Khedim M, Peronet R, Mecheri S, Witkowski B, Scherf A, Arimondo PB. Procainamide-SAHA Fused Inhibitors of hHDAC6 Tackle Multidrug-Resistant Malaria Parasites. J Med Chem 2021; 64:10403-10417. [PMID: 34185525 DOI: 10.1021/acs.jmedchem.1c00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials. Compared to the single drugs, the combined molecules showed a superior activity in Plasmodium and a potent inhibition against human HDAC6, exerting no cytotoxicity in human cell lines. These new compounds are fully active in multidrug-resistant Plasmodium falciparum Cambodian isolates. They target transmission of the parasite by inducing irreversible morphological changes in gametocytes and inhibiting exflagellation. The compounds are slow-acting and have an additive antimalarial effect in combination with fast-acting epidrugs and dihydroartemisinin. The lead compound decreases parasitemia in mice in a severe malaria model. Taken together, this novel fused molecule offers an affordable alternative to current failing antimalarial therapy.
Collapse
Affiliation(s)
- Flore Nardella
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Irina Dobrescu
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Johanna Viluma
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Corentin Bon
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Aurélie Claes
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Elie Hammam
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Diane Erdmann
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France.,Ecole Doctorale MTCI ED563, Université de Paris, Sorbonne Paris Cité, Paris 75270, France
| | - Melissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Roger Peronet
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Salah Mecheri
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
16
|
Lyu HN, Ma N, Meng Y, Zhang X, Wong YK, Xu C, Liao F, Jiang T, Tu Y, Wang J. Study towards improving artemisinin-based combination therapies. Nat Prod Rep 2021; 38:1243-1250. [PMID: 34287440 DOI: 10.1039/d0np00079e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: Up to 2020 Artemisinin has made a significant contribution towards global malaria control since its initial discovery. Countless lives have been saved by this unique and miraculous molecule. In 2006, artemisinin-based combination therapies (ACTs) were recommended by the World Health Organization (WHO) as the first-line treatment for uncomplicated malaria infection and have since remained as the mainstays of the antimalarial treatment. Even so, substantial efforts to pursue better curative effects for the treatment of malaria have never ceased, particularly with regards to the circumstances surrounding the appearance of delayed clearance of malaria parasites by 3 day ACT treatments in South-East Asian countries. Strategies to further optimize artemisinin-based therapies, including synthesizing better artemisinin derivatives, developing advanced drug delivery systems, and diversifying artemisinin partner drugs, have been proposed over the past few years. Here, we provide an updated account of the continuous efforts in improving ACTs for better efficacy in curing malarial infection.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Nan Ma
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuqing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yin-Kwan Wong
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chengchao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. and The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Fulong Liao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Tingliang Jiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Youyou Tu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China and Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China and Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China and The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| |
Collapse
|
17
|
Activity of Epigenetic Inhibitors against Plasmodium falciparum Asexual and Sexual Blood Stages. Antimicrob Agents Chemother 2020; 64:AAC.02523-19. [PMID: 32366713 DOI: 10.1128/aac.02523-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.
Collapse
|