1
|
Li S, Zeng T, Wu Z, Huang J, Cao X, Liu Y, Bai S, Chen Q, Li C, Lu C, Yang H. DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting. J Am Chem Soc 2025. [PMID: 39749585 DOI: 10.1021/jacs.4c16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers. Herein, we developed a multivalent PROTAC based on a DNA tetrahedron, named AS-TD2-PRO. Using DNA tetrahedron as a linker, we combined modules targeting tumor cells, recognizing E3 ligases, and multiple POI together. We took the undruggable target protein signal transducer and activator of transcription 3 (STAT3), associated with the etiology and progression in a variety of malignant tumors, as an example in this study. AS-TD2-PRO with two STAT3 recognition modules demonstrated good potential in enhancing tumor-specific targeting and degradation efficiency compared to traditional bivalent PROTACs. Furthermore, in a mouse tumor model, the superior therapeutic activity of AS-TD2-PRO was observed. Overall, DNA tetrahedron-driven multivalent PROTACs both serve as a proof of principle for multifunctional PROTAC design and introduce a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhixing Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
2
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2024:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
Sheng J, Li Z, Koh KKY, Shi Q, Foo A, Tan PML, Kha TK, Wang X, Fang L, Zhu RY. Merging DNA Repair with Bioorthogonal Conjugation Enables Accessible and Versatile Asymmetric DNA Catalysis. J Am Chem Soc 2024. [PMID: 38860598 DOI: 10.1021/jacs.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Optimizing catalysts through high-throughput screening for asymmetric catalysis is challenging due to the difficulty associated with assembling a library of catalyst analogues in a timely fashion. Here, we repurpose DNA excision repair and integrate it with bioorthogonal conjugation to construct a diverse array of DNA hybrid catalysts for highly accessible and high-throughput asymmetric DNA catalysis, enabling a dramatically expedited catalyst optimization process, superior reactivity and selectivity, as well as the first atroposelective DNA catalysis. The bioorthogonality of this conjugation strategy ensures exceptional tolerance toward diverse functional groups, thereby facilitating the facile construction of 44 DNA hybrid catalysts bearing various unprotected functional groups. This unique feature holds the potential to enable catalytic modalities in asymmetric DNA catalysis that were previously deemed unattainable.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Zhaoyang Li
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Kelly Kar Yun Koh
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Qi Shi
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Angel Foo
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | | | - Tuan-Khoa Kha
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Xujie Wang
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Leonard Fang
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
4
|
Calik F, Degirmenci A, Maouati H, Sanyal R, Sanyal A. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. ACS Biomater Sci Eng 2024; 10:3017-3028. [PMID: 38655791 DOI: 10.1021/acsbiomaterials.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.
Collapse
Affiliation(s)
- Filiz Calik
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Hamida Maouati
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| |
Collapse
|
5
|
Vilkaitis G, Masevičius V, Kriukienė E, Klimašauskas S. Chemical Expansion of the Methyltransferase Reaction: Tools for DNA Labeling and Epigenome Analysis. Acc Chem Res 2023; 56:3188-3197. [PMID: 37904501 PMCID: PMC10666283 DOI: 10.1021/acs.accounts.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
DNA is the genetic matter of life composed of four major nucleotides which can be further furnished with biologically important covalent modifications. Among the variety of enzymes involved in DNA metabolism, AdoMet-dependent methyltransferases (MTases) combine the recognition of specific sequences and covalent methylation of a target nucleotide. The naturally transferred methyl groups play important roles in biological signaling, but they are poor physical reporters and largely resistant to chemical derivatization. Therefore, an obvious strategy to unlock the practical utility of the methyltransferase reactions is to enable the transfer of "prederivatized" (extended) versions of the methyl group.However, previous enzymatic studies of extended AdoMet analogs indicated that the transalkylation reactions are drastically impaired as the size of the carbon chain increases. In collaborative efforts, we proposed that, akin to enhanced SN2 reactivity of allylic and propargylic systems, addition of a π orbital next to the transferable carbon atom might confer the needed activation of the reaction. Indeed, we found that MTase-catalyzed transalkylations of DNA with cofactors containing a double or a triple C-C bond in the β position occurred in a robust and sequence-specific manner. Altogether, this breakthrough approach named mTAG (methyltransferase-directed transfer of activated groups) has proven instrumental for targeted labeling of DNA and other types of biomolecules (using appropriate MTases) including RNA and proteins.Our further work focused on the propargylic cofactors and their reactions with DNA cytosine-5 MTases, a class of MTases common for both prokaryotes and eukaryotes. Here, we learned that the 4-X-but-2-yn-1-yl (X = polar group) cofactors suffered from a rapid loss of activity in aqueous buffers due to susceptibility of the triple bond to hydration. This problem was remedied by synthetically increasing the separation between X and the triple bond from one to three carbon units (6-X-hex-2-ynyl cofactors). To further optimize the transfer of the bulkier groups, we performed structure-guided engineering of the MTase cofactor pocket. Alanine replacements of two conserved residues conferred substantial improvements of the transalkylation activity with M.HhaI and three other engineered bacterial C5-MTases. Of particular interest were CpG-specific DNA MTases (M.SssI), which proved valuable tools for studies of mammalian methylomes and chemical probing of DNA function.Inspired by the successful repurposing of bacterial enzymes, we turned to more complex mammalian C5-MTases (Dnmt1, Dnmt3A, and Dnmt3B) and asked if they could ultimately lead to mTAG labeling inside mammalian cells. Our efforts to engineer mouse Dnmt1 produced a variant (Dnmt1*) that enabled efficient Dnmt1-directed deposition of 6-azide-hexynyl groups on DNA in vitro. CRISPR-Cas9 editing of the corresponding codons in the genomic Dnmt1 alleles established endogenous expression of Dnmt1* in mouse embryonic stem cells. To circumvent the poor cellular uptake of AdoMet and its analogs, we elaborated their efficient internalization by electroporation, which has finally enabled selective catalysis-dependent azide tagging of natural Dnmt1 targets in live mammalian cells. The deposited chemical groups were then exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. These findings offer unprecedented inroads into studies of DNA methylation in a wide range of eukaryotic model systems.
Collapse
Affiliation(s)
- Giedrius Vilkaitis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute
of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Edita Kriukienė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Irving OJ, Matthews L, Coulthard S, Neely RK, Grant MM, Albrecht T. Sterically Enhanced Control of Enzyme-Assisted DNA Assembly. Chembiochem 2023; 24:e202300361. [PMID: 37681318 DOI: 10.1002/cbic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Traditional methods for the assembly of functionalised DNA structures, involving enzyme restriction and modification, present difficulties when working with small DNA fragments (<100 bp), in part due to a lack of control over enzymatic action during the DNA modification process. This limits the design flexibility and range of accessible DNA structures. Here, we show that these limitations can be overcome by introducing chemical modifications into the DNA that spatially restrict enzymatic activity. This approach, sterically controlled nuclease enhanced (SCoNE) DNA assembly, thereby circumvents the size limitations of conventional Gibson assembly (GA) and allows the preparation of well-defined, functionalised DNA structures with multiple probes for specific analytes, such as IL-6, procalcitonin (PCT), and a biotin reporter group. Notably, when using the same starting materials, conventional GA under typical conditions fails. We demonstrate successful analyte capture based on standard and modified sandwich ELISA and also show how the inclusion of biotin probes provides additional functionality for product isolation.
Collapse
Affiliation(s)
- Oliver J Irving
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Lauren Matthews
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Steven Coulthard
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Robert K Neely
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust), 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Tim Albrecht
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
8
|
Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Analogs of S-Adenosyl- L-Methionine in Studies of Methyltransferases. Mol Biol 2022; 56:229-250. [PMID: 35440827 PMCID: PMC9009987 DOI: 10.1134/s002689332202011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S‑adenosyl‑L‑methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.
Collapse
Affiliation(s)
- A. Yu. Rudenko
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - S. S. Mariasina
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - V. I. Polshakov
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Liu H, Wang Y, Zhou X. Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chem Biol 2022; 3:994-1007. [PMID: 35975003 PMCID: PMC9347354 DOI: 10.1039/d2cb00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
The bio-orthogonal reaction is a type of reaction that can occur within a cell without interfering with the active components of the cell. Bio-orthogonal reaction techniques have been used to label and track the synthesis, metabolism, and interactions of distinct biomacromolecules in cells. Thus, it is a handy tool for analyzing biological macromolecules within cells. Nucleic acid modifications are widely distributed in DNA and RNA in cells and play a critical role in regulating physiological and pathological cellular activities. Utilizing bio-orthogonal tools to study modified bases is a critical and worthwhile research direction. The development of bio-orthogonal reactions focusing on nucleic acid modifications has enabled the mapping of nucleic acid modifications in DNA and RNA. This review discusses the recent advances in bio-orthogonal labeling and sequencing nucleic acid modifications in DNA and RNA. Labeling nucleic acid modifications using bio-orthogonal tools, then sequencing and imaging the labeled modifications in DNA and RNA.![]()
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Michailidou F, Rentmeister A. Harnessing methylation and AdoMet-utilising enzymes for selective modification in cascade reactions. Org Biomol Chem 2021; 19:3756-3762. [PMID: 33949607 PMCID: PMC7611180 DOI: 10.1039/d1ob00354b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enzyme-mediated methylation is a very important reaction in nature, yielding a wide range of modified natural products, diversifying small molecules and fine-tuning the activity of biomacromolecules. The field has attracted much attention over the recent years and interesting applications of the dedicated enzymes in biocatalysis and biomolecular labelling have emerged. In this review article, we summarise the concepts and recent advances in developing (chemo)-enzymatic cascades for selective methylation, alkylation and photocaging as tools to study biological methylation and as biotransformations to generate site-specifically alkylated products.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 481\49 Münster, Germany.
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 481\49 Münster, Germany.
| |
Collapse
|
12
|
Jalali E, Thorson JS. Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications. Curr Opin Biotechnol 2021; 69:290-298. [PMID: 33901763 DOI: 10.1016/j.copbio.2021.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/28/2022]
Abstract
Transferases have emerged as among the best catalysts for enzyme-mediated bioorthogonal functional group installation to advance innovative in vitro, cell-based and in vivo chemical biology applications. This review introduces the key considerations for selecting enzyme catalysts and chemoselective reactions most amenable to bioorthogonal platform development and highlights relevant key technology development and applications for one ubiquitous transferase subclass - methyltransferases (MTs). Within this context, recent advances in MT-enabled bioorthogonal labeling/conjugation relevant to DNA, RNA, protein, and natural products (i.e. complex small molecule metabolites) are highlighted.
Collapse
Affiliation(s)
- Elnaz Jalali
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States; Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, KY 40536, United States.
| |
Collapse
|
13
|
Long Y, Ubych K, Jagu E, Neely RK. FRET-Based Method for Direct, Real-Time Measurement of DNA Methyltransferase Activity. Bioconjug Chem 2020; 32:192-198. [PMID: 33306345 DOI: 10.1021/acs.bioconjchem.0c00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA methyltransferase activity is associated with a host of diseases, including cancers, where global hypomethylation of the genome, as well as marked changes in local DNA methylation patterns, can be both diagnostic and prognostic for the disease. Despite this, we currently lack a method for directly measuring the activity of the DNA methyltransferases, which would support the development of DNA methyltransferase-targeted therapies. Here, we demonstrate an assay for the direct measurement of methyltransferase activity, in real time. We employ a fluorescent methyltransferase cofactor analogue, which when bound by the enzyme to a labeled target DNA sequence results in fluorescence resonance energy transfer (FRET) between the donor dye (DNA) and the acceptor dye (cofactor). We demonstrate that the method can be used to monitor the activity of DNA MTases in real time and can be applied to screen inhibitors of the DNA methyltransferases. We show this in both bulk phase and single molecule imaging experiments, highlighting the potential application of the assay in screening and biophysical studies of methyltransferase function.
Collapse
Affiliation(s)
- Yi Long
- The University of Birmingham, School of Chemistry, Edgbaston, Birmingham, B15 2TT, United Kingdom.,Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, Guangdong Province, 518055, China
| | - Krystian Ubych
- The University of Birmingham, School of Chemistry, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Elodie Jagu
- The University of Birmingham, School of Chemistry, Edgbaston, Birmingham, B15 2TT, United Kingdom.,ICCF, SIGMA Clermont, Université Clermont Auvergne, CNRS, Clermont-Ferrand, 63178 Aubière, France
| | - Robert K Neely
- The University of Birmingham, School of Chemistry, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
14
|
Heck C, Torchinsky D, Nifker G, Gularek F, Michaeli Y, Weinhold E, Ebenstein Y. Label as you fold: methyltransferase-assisted functionalization of DNA nanostructures. NANOSCALE 2020; 12:20287-20291. [PMID: 33001091 DOI: 10.1039/d0nr03694c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-DNA labels are key components for the construction of functional DNA nanostructures. Here, we present a method to graft covalent labels onto DNA origami nanostructures in an enzymatic one-pot reaction. The DNA methyltransferase M.TaqI labels the DNA nanostructures with azide groups, which serve as universal attachment points via click chemistry. Direct labeling with fluorescent dyes is also demonstrated. The procedure yields structures with high fluorescence intensities and narrow intensity distributions. In combination with UV crosslinking it enables the creation of temperature-stable, intense fluorescent beacons.
Collapse
Affiliation(s)
- Christian Heck
- School of Chemistry/Center for Nanoscience and Nanotechnology/Center for Light-Matter Interaction, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | - Dmitry Torchinsky
- School of Chemistry/Center for Nanoscience and Nanotechnology/Center for Light-Matter Interaction, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | - Gil Nifker
- School of Chemistry/Center for Nanoscience and Nanotechnology/Center for Light-Matter Interaction, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | - Felix Gularek
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yael Michaeli
- School of Chemistry/Center for Nanoscience and Nanotechnology/Center for Light-Matter Interaction, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yuval Ebenstein
- School of Chemistry/Center for Nanoscience and Nanotechnology/Center for Light-Matter Interaction, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|