1
|
Yao H, Kelley S, Zhou D, VanSickle S, Wang SP, Piesvaux J, Zhou H, Chen H, McKenney D, McLaren DG, Ballard JE, Previs SF. Quantifying protein kinetics in vivo: influence of precursor dynamics on product labeling. Am J Physiol Endocrinol Metab 2025; 328:E173-E185. [PMID: 39540778 DOI: 10.1152/ajpendo.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, interconnected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, and we direct attention toward stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared with continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast versus slow turnover precursors (e.g., 13C-leucine vs. 2H-water, respectively). Although the data collected here underscore certain advantages of using longer-lived precursors (e.g., 2H- or 18O-water), the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.NEW & NOTEWORTHY We demonstrate a simple and robust protocol for measuring protein synthesis, the work considers problems encountered in experimental design. The logic can enable biologists with limited resources and/or can facilitate scenarios where higher throughput experiments are needed.
Collapse
Affiliation(s)
- Huifang Yao
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - Seamus Kelley
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Dan Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sophie VanSickle
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sheng-Ping Wang
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jennifer Piesvaux
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Haihong Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - David McKenney
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - David G McLaren
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jeanine E Ballard
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Stephen F Previs
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| |
Collapse
|
2
|
Qiu Y, Wiewiora RP, Izaguirre JA, Xu H, Sherman W, Tang W, Huang X. Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design. JACS AU 2024; 4:3857-3868. [PMID: 39483225 PMCID: PMC11522902 DOI: 10.1021/jacsau.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Targeted protein degradation (TPD) is emerging as a promising therapeutic approach for cancer and other diseases, with an increasing number of programs demonstrating its efficacy in human clinical trials. One notable method for TPD is Proteolysis Targeting Chimeras (PROTACs) that selectively degrade a protein of interest (POI) through E3-ligase induced ubiquitination followed by proteasomal degradation. PROTACs utilize a warhead-linker-ligand architecture to bring the POI (bound to the warhead) and the E3 ligase (bound to the ligand) into proximity. The resulting non-native protein-protein interactions (PPIs) formed between the POI and E3 ligase lead to the formation of a stable ternary complex, enhancing cooperativity for TPD. A significant challenge in PROTAC design is the screening of the linkers to induce favorable non-native PPIs between POI and E3 ligase. Here, we present a physics-based computational protocol to predict noncanonical and metastable PPI interfaces between an E3 ligase and a given POI, aiding in the design of linkers to stabilize the ternary complex and enhance degradation. Specifically, we build the non-Markovian dynamic model using the Integrative Generalized Master equation (IGME) method from ∼1.5 ms all-atom molecular dynamics simulations of linker-less encounter complex, to systematically explore the inherent PPIs between the oncogene homologue protein and the von Hippel-Lindau E3 ligase. Our protocol revealed six metastable states each containing a different PPI interface. We selected three of these metastable states containing promising PPIs for linker design. Our selection criterion included thermodynamic and kinetic stabilities of PPIs and the accessibility between the solvent-exposed sites on the warheads and E3 ligand. One selected PPIs closely matches a recent cocrystal PPI interface structure induced by an experimentally designed PROTAC with potent degradation efficacy. We anticipate that our protocol has significant potential for widespread application in predicting metastable POI-ligase interfaces that can enable rational design of PROTACs.
Collapse
Affiliation(s)
- Yunrui Qiu
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | - Huafeng Xu
- Atommap
Corporation, NY, New York 10013, United
States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210, United States
| | - Weiping Tang
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xuhui Huang
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Wilkinson DJ, Crossland H, Atherton PJ. Metabolomic and proteomic applications to exercise biomedicine. TRANSLATIONAL EXERCISE BIOMEDICINE 2024; 1:9-22. [PMID: 38660119 PMCID: PMC11036890 DOI: 10.1515/teb-2024-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Objectives 'OMICs encapsulates study of scaled data acquisition, at the levels of DNA, RNA, protein, and metabolite species. The broad objectives of OMICs in biomedical exercise research are multifarious, but commonly relate to biomarker development and understanding features of exercise adaptation in health, ageing and metabolic diseases. Methods This field is one of exponential technical (i.e., depth of feature coverage) and scientific (i.e., in health, metabolic conditions and ageing, multi-OMICs) progress adopting targeted and untargeted approaches. Results Key findings in exercise biomedicine have led to the identification of OMIC features linking to heritability or adaptive responses to exercise e.g., the forging of GWAS/proteome/metabolome links to cardiovascular fitness and metabolic health adaptations. The recent addition of stable isotope tracing to proteomics ('dynamic proteomics') and metabolomics ('fluxomics') represents the next phase of state-of-the-art in 'OMICS. Conclusions These methods overcome limitations associated with point-in-time 'OMICs and can be achieved using substrate-specific tracers or deuterium oxide (D2O), depending on the question; these methods could help identify how individual protein turnover and metabolite flux may explain exercise responses. We contend application of these methods will shed new light in translational exercise biomedicine.
Collapse
Affiliation(s)
- Daniel J. Wilkinson
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Hannah Crossland
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
4
|
Mostofian B, Martin HJ, Razavi A, Patel S, Allen B, Sherman W, Izaguirre JA. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. J Chem Inf Model 2023; 63:5408-5432. [PMID: 37602861 PMCID: PMC10498452 DOI: 10.1021/acs.jcim.3c00603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/22/2023]
Abstract
The therapeutic approach of targeted protein degradation (TPD) is gaining momentum due to its potentially superior effects compared with protein inhibition. Recent advancements in the biotech and pharmaceutical sectors have led to the development of compounds that are currently in human trials, with some showing promising clinical results. However, the use of computational tools in TPD is still limited, as it has distinct characteristics compared with traditional computational drug design methods. TPD involves creating a ternary structure (protein-degrader-ligase) responsible for the biological function, such as ubiquitination and subsequent proteasomal degradation, which depends on the spatial orientation of the protein of interest (POI) relative to E2-loaded ubiquitin. Modeling this structure necessitates a unique blend of tools initially developed for small molecules (e.g., docking) and biologics (e.g., protein-protein interaction modeling). Additionally, degrader molecules, particularly heterobifunctional degraders, are generally larger than conventional small molecule drugs, leading to challenges in determining drug-like properties like solubility and permeability. Furthermore, the catalytic nature of TPD makes occupancy-based modeling insufficient. TPD consists of multiple interconnected yet distinct steps, such as POI binding, E3 ligase binding, ternary structure interactions, ubiquitination, and degradation, along with traditional small molecule properties. A comprehensive set of tools is needed to address the dynamic nature of the induced proximity ternary complex and its implications for ubiquitination. In this Perspective, we discuss the current state of computational tools for TPD. We start by describing the series of steps involved in the degradation process and the experimental methods used to characterize them. Then, we delve into a detailed analysis of the computational tools employed in TPD. We also present an integrative approach that has proven successful for degrader design and its impact on project decisions. Finally, we examine the future prospects of computational methods in TPD and the areas with the greatest potential for impact.
Collapse
Affiliation(s)
- Barmak Mostofian
- OpenEye, Cadence Molecular Sciences, Boston, Massachusetts 02114 United States
| | - Holli-Joi Martin
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Asghar Razavi
- ENKO
Chem, Inc, Mystic, Connecticut 06355 United States
| | - Shivam Patel
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Bryce Allen
- Differentiated
Therapeutics, San Diego, California 92056 United States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Jesus A Izaguirre
- Differentiated
Therapeutics, San Diego, California 92056 United States
- Atommap
Corporation, New York, New York 10013 United States
| |
Collapse
|
5
|
Shi Y, Weng N, Jian W. Measurement of protein in vivo turnover rate with metabolic labeling using LC-MS. Biomed Chromatogr 2023:e5583. [PMID: 36634055 DOI: 10.1002/bmc.5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Understanding the protein dynamics of a drug target is important for pharmaceutical research because it provides insight into drug design, target engagement, pharmacodynamics and drug efficacy. Nonradioactive isotope labeling has been the method of choice for protein turnover measurement thanks to the advancement of high-resolution mass spectrometry. While the changes in proteome in cell cultures can be monitored precisely, as the culture media can be completely replaced with 2 H-, 15 N- or 13 C-labeled essential amino acids, quantifying rates of protein synthesis in vivo is more challenging. The amount of isotope tracer that can be administered into the body is relatively small compared with the existing protein, thus requiring more sensitive detection, and the precursor-product labeling relationship is more complicated to interpret. The purpose of this review is to provide an overview of the principles of in vivo protein turnover studies using deuterium water (2 H2 O) with an emphasis on targeted protein analysis by hybrid LC-MS assay platforms. The pursuit of these opportunities will facilitate drug discovery and research in preclinical and clinical stages.
Collapse
Affiliation(s)
- Yifan Shi
- Bioanalytical Discovery and Development Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Naidong Weng
- Bioanalytical Discovery and Development Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Wenying Jian
- Bioanalytical Discovery and Development Sciences, Janssen Research and Development, Spring House, PA, USA
| |
Collapse
|
6
|
Bartlett DW, Gilbert AM. Translational PK-PD for targeted protein degradation. Chem Soc Rev 2022; 51:3477-3486. [PMID: 35438107 DOI: 10.1039/d2cs00114d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Targeted protein degradation has emerged from the chemical biology toolbox as one of the most exciting areas for novel therapeutic development across the pharmaceutical industry. The ability to induce the degradation, and not just inhibition, of target proteins of interest (POIs) with high potency and selectivity is a particularly attractive property for a protein degrader therapeutic. However, the physicochemical properties and mechanism of action for protein degraders can lead to unique pharmacokinetic (PK) and pharmacodynamic (PD) properties relative to traditional small molecule drugs, requiring a shift in perspective for translational pharmacology. In this review, we provide practical insights for building the PK-PD understanding of protein degraders in the context of translational drug development through the use of quantitative mathematical frameworks and standard experimental assays. Published datasets describing protein degrader pharmacology are used to illustrate the applicability of these insights. The learnings are consolidated into a translational PK-PD roadmap for targeted protein degradation that can enable a systematic, rational design workflow for protein degrader therapeutics.
Collapse
Affiliation(s)
- Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research, Development and Medical, Pfizer Inc, San Diego, CA, USA.
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Worldwide Research, Development and Medical, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
7
|
Sadygov RG. Protein turnover models for LC-MS data of heavy water metabolic labeling. Brief Bioinform 2022; 23:bbab598. [PMID: 35062023 PMCID: PMC8921656 DOI: 10.1093/bib/bbab598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/23/2023] Open
Abstract
Protein turnover is vital for cellular functioning and is often associated with the pathophysiology of a variety of diseases. Metabolic labeling with heavy water followed by liquid chromatography coupled to mass spectrometry is a powerful tool to study in vivo protein turnover in high throughput and large scale. Heavy water is a cost-effective and easy to use labeling agent. It labels all nonessential amino acids. Due to its toxicity in high concentrations (20% or higher), small enrichments (8% or smaller) of heavy water are used with most organisms. The low concentration results in incomplete labeling of peptides/proteins. Therefore, the data processing is more challenging and requires accurate quantification of labeled and unlabeled forms of a peptide from overlapping mass isotopomer distributions. The work describes the bioinformatics aspects of the analysis of heavy water labeled mass spectral data, available software tools and current challenges and opportunities.
Collapse
Affiliation(s)
- Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University of Blvd, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Hu Z, Crews CM. Recent Developments in PROTAC-Mediated Protein Degradation: From Bench to Clinic. Chembiochem 2022; 23:e202100270. [PMID: 34494353 PMCID: PMC9395155 DOI: 10.1002/cbic.202100270] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Indexed: 01/21/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs), an emerging paradigm-shifting technology, hijacks the ubiquitin-proteasome system for targeted protein degradation. PROTACs induce ternary complexes between an E3 ligase and POI, and this induced proximity leads to polyUb chain formation on substrates and eventual proteasomal-mediated POI degradation. PROTACs have shown great therapeutic potential by degrading many disease-causing proteins, such as the androgen receptor and BRD4. The PROTAC technology has advanced significantly in the last two decades, with the repertoire of PROTAC targets increased tremendously. Herein, we describe recent developments of PROTAC technology, focusing on mechanistic and kinetic studies, pharmacokinetic study, spatiotemporal control of PROTACs, covalent PROTACs, resistance to PROTACs, and new E3 ligands.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Gabisonia K, Burjanadze G, Woitek F, Keles A, Seki M, Gorgodze N, Carlucci L, Ilchenko S, Kurishima C, Walsh K, Piontkivska H, Recchia FA, Kasumov T. Proteome dynasmics and bioinformatics reveal major alterations in the turnover rate of functionally related cardiac and plasma proteins in a dog model of congestive heart failure. J Card Fail 2021; 28:588-600. [PMID: 34785403 DOI: 10.1016/j.cardfail.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022]
Abstract
Protein pool turnover is a critically important cellular homeostatic component, yet it has been little explored in the context of heart failure (HF) pathophysiology. We employed in vivo 2H labeling/ proteome dynamics for non-biased discovery of turnover alterations involving functionally linked cardiac and plasma proteins in canine tachypacing-induced HF, an established preclinical model of dilated cardiomyopathy. Compared to control, dogs with congestive HF displayed bidirectional turnover changes of 28 cardiac proteins, i.e. reduced half-life of several key enzymes involved in glycolysis, homocysteine metabolism and glycogenesis, and increased half-life of proteins involved in proteolysis. Changes in plasma proteins were more modest: only 5 proteins, involved in various functions including proteolysis inhibition, hemoglobin, calcium and ferric-iron binding, displayed increased or decreased turnover rates. In other dogs undergoing cardiac tachypacing, we infused for 2 weeks the myokine Follistatin-like protein 1 (FSTL1), known for its ameliorative effects on HF-induced alterations. Proteome dynamics proved very sensitive in detecting the partial or complete prevention, by FSTL1, of cardiac and plasma protein turnover alterations. In conclusion, our study unveiled, for the first time in a large mammal, numerous HF-related alterations that may serve as the basis for future mechanistic research and/or as conceptually new molecular markers.
Collapse
Key Words
- ATIC, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase /IMP cyclohydrolase
- BNP, brain natriuretic peptide
- CLTC, Clathrin heavy chain
- CRP, Pentraxin
- CYB5R3, NADH-cytochrome b5 reductase
- DPYSL2, Dihydropyrimidinase Like 2
- FDR, false discovery rate
- FSTL1, Follistatin-like protein 1
- GAPDHS, Glyceraldehyde-3-phosphate dehydrogenase
- GYS1, Glycogen synthase
- HF, Heart failure
- HSP90, Heat shock protein 90
- HSP90AB1, Heat shock protein 90 alpha family class B member 1
- HSPA1A, Heat Shock Protein A1
- LC-MS, liquid chromatography-mass spectrometry
- LFQ, Label-free quantification
- LOC479668, Haptoglobin
- LTAH4, Leukotriene A (4) hydrolase
- LV, Left ventricle
- PCA, Principal Component Analysis
- PDHA1, Pyruvate dehydrogenase E1 component subunit alpha
- PDHB, Pyruvate dehydrogenase E1 component subunit beta
- PGM, Phosphoglucomutase 1
- PSMD2, Proteasome 26S subunit, non-ATPase 2
- STIP1, Stress induced phosphoprotein
- TF, Transferrin
- proteome dynamics, bioinformatics, cardiac disease, heart failure, List of abbreviations: ANP, atrial natriuretic peptide
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Gia Burjanadze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Felix Woitek
- Heart Center Dresden-University Clinic, Technical University Dresden, Dresden, Germany
| | - Ayse Keles
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mitsuru Seki
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nikoloz Gorgodze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Lucia Carlucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Serguei Ilchenko
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Clara Kurishima
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Helen Piontkivska
- Department of Biological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy; Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
10
|
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.
Collapse
Affiliation(s)
- M Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - D Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - C S Kounde
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Q Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| |
Collapse
|