1
|
Mut J, Altmann S, Reising S, Meißner-Weigl J, Driessen MD, Ebert R, Seibel J. SiaNAl can be efficiently incorporated in glycoproteins of human mesenchymal stromal cells by metabolic glycoengineering. ACS Biomater Sci Eng 2024; 10:139-148. [PMID: 36946521 DOI: 10.1021/acsbiomaterials.2c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.
Collapse
Affiliation(s)
- Jürgen Mut
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephan Altmann
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Sabine Reising
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Marc D Driessen
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
2
|
Ni X, Murray NB, Archer-Hartmann S, Pepi LE, Helm RF, Azadi P, Hong P. Toward Automatic Inference of Glycan Linkages Using MS n and Machine Learning─Proof of Concept Using Sialic Acid Linkages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2127-2135. [PMID: 37621000 PMCID: PMC10557947 DOI: 10.1021/jasms.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Glycosidic linkages in oligosaccharides play essential roles in determining their chemical properties and biological activities. MSn has been widely used to infer glycosidic linkages but requires a substantial amount of starting material, which limits its application. In addition, there is a lack of rigorous research on what MSn protocols are proper for characterizing glycosidic linkages. In this work, to deliver high-quality experimental data and analysis results, we propose a machine learning-based framework to establish appropriate MSn protocols and build effective data analysis methods. We demonstrate the proof-of-principle by applying our approach to elucidate sialic acid linkages (α2'-3' and α2'-6') in a set of sialyllactose standards and NIST sialic acid-containing N-glycans as well as identify several protocol configurations for producing high-quality experimental data. Our companion data analysis method achieves nearly 100% accuracy in classifying α2'-3' vs α2'-6' using MS5, MS4, MS3, or even MS2 spectra alone. The ability to determine glycosidic linkages using MS2 or MS3 is significant as it requires substantially less sample, enabling linkage analysis for quantity-limited natural glycans and synthesized materials, as well as shortens the overall experimental time. MS2 is also more amenable than MS3/4/5 to automation when coupled to direct infusion or LC-MS. Additionally, our method can predict the ratio of α2'-3' and α2'-6' in a mixture with 8.6% RMSE (root-mean-square error) across data sets using MS5 spectra. We anticipate that our framework will be generally applicable to analysis of other glycosidic linkages.
Collapse
Affiliation(s)
- Xinyi Ni
- Computer
Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Nathan B. Murray
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | | | - Lauren E. Pepi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Richard F. Helm
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Pengyu Hong
- Computer
Science, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
3
|
Switching azide and alkyne tags on bioorthogonal reporters in metabolic labeling of sialylatedglycoconjugates: a comparative study. Sci Rep 2022; 12:22129. [PMID: 36550357 PMCID: PMC9780200 DOI: 10.1038/s41598-022-26521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.
Collapse
|
4
|
Burns MWN, Kohler JJ. Engineering Glyco‐Enzymes for Substrate Identification and Targeting. Isr J Chem 2022. [DOI: 10.1002/ijch.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mary W. N. Burns
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| | - Jennifer J. Kohler
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Sosicka P, Ng BG, Pepi LE, Shajahan A, Wong M, Scott DA, Matsumoto K, Xia ZJ, Lebrilla CB, Haltiwanger RS, Azadi P, Freeze HH. Origin of cytoplasmic GDP-fucose determines its contribution to glycosylation reactions. J Cell Biol 2022; 221:e202205038. [PMID: 36053214 PMCID: PMC9441714 DOI: 10.1083/jcb.202205038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Biosynthesis of macromolecules requires precursors such as sugars or amino acids, originating from exogenous/dietary sources, reutilization/salvage of degraded molecules, or de novo synthesis. Since these sources are assumed to contribute to one homogenous pool, their individual contributions are often overlooked. Protein glycosylation uses monosaccharides from all the above sources to produce nucleotide sugars required to assemble hundreds of distinct glycans. Here, we demonstrate that cells identify the origin/heritage of the monosaccharide, fucose, for glycosylation. We measured the contribution of GDP-fucose from each of these sources for glycan synthesis and found that different fucosyltransferases, individual glycoproteins, and linkage-specific fucose residues identify and select different GDP-fucose pools dependent on their heritage. This supports the hypothesis that GDP-fucose exists in multiple, distinct pools, not as a single homogenous pool. The selection is tightly regulated since the overall pool size remains constant. We present novel perspectives on monosaccharide metabolism, which may have a general applicability.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Maurice Wong
- Department of Chemistry, University of California Davis, Davis, CA
| | - David A. Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
7
|
Liu F, Chen HM, Armstrong Z, Withers SG. Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes. ACS CENTRAL SCIENCE 2022; 8:656-662. [PMID: 35647280 PMCID: PMC9136970 DOI: 10.1021/acscentsci.1c01172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 06/15/2023]
Abstract
Azido sugars have found frequent use as probes of biological systems in approaches ranging from cell surface metabolic labeling to activity-based proteomic profiling of glycosidases. However, little attention is typically paid to how well azide-substituted sugars represent the parent molecule, despite the substantial difference in size and structure of an azide compared to a hydroxyl. To quantitatively assess how well azides are accommodated, we have used glycosidases as tractable model enzyme systems reflecting what would also be expected for glycosyltransferases and other sugar binding/modifying proteins. In this vein, specificity constants have been measured for the hydrolysis of a series of azidodeoxy glucosides and N-acetylhexosaminides by a large number of glycosidases produced from expressed synthetic gene and metagenomic libraries. Azides at secondary carbons are not significantly accommodated, and thus, associated substrates are not processed, while those at primary carbons are productively recognized by only a small subset of the enzymes and often then only very poorly. Accordingly, in the absence of careful controls, results obtained with azide-modified sugars may not be representative of the situation with the natural sugar and should be interpreted with considerable caution. Azide incorporation can indeed provide a useful tool to monitor and detect glycosylation, but careful consideration should go into the selection of sites of azide substitution; such studies should not be used to quantitate glycosylation or to infer the absence of glycosylation activity.
Collapse
|
8
|
Marando VM, Kim DE, Kiessling LL. Biosynthetic incorporation for visualizing bacterial glycans. Methods Enzymol 2022; 665:135-151. [PMID: 35379432 DOI: 10.1016/bs.mie.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell-surface glycans are central to many biological processes, yet methods for their site-selective modification are limited. Strategies for interrogating the structure and function of proteins have been enabled by chemoselective reactions of sidechain functionality for covalent modification, capture, or imaging. However, unlike protein sidechains, glycan building blocks lack distinguishing reactivity. Moreover, glycans are not primary gene products, so encoding glycan variants through genetic manipulation is challenging. Reactive functional groups can be introduced into glycans through metabolic engineering, which involves the generation of modified nucleotide-sugar building blocks. Lipid-linked building blocks, which are also used in glycan biosynthesis, have the advantage that they can be delivered directly to glycosyltransferases to function as surrogate substrates. This process, termed "biosynthetic incorporation," takes advantage of the properties of bacterial glycosyltransferase: they are selective for the products they generate yet promiscuous in their donor preferences. We describe how this strategy can be implemented to label arabinofuranose-containing glycans on the surface of mycobacterial cells. We anticipate that this platform can be expanded to develop chemoselective labeling agents for other important bacterial monosaccharides.
Collapse
Affiliation(s)
- Victoria M Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daria E Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
9
|
Wu H, Shajahan A, Yang JY, Capota E, Wands AM, Arthur CM, Stowell SR, Moremen KW, Azadi P, Kohler JJ. A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Cell Chem Biol 2022; 29:84-97.e8. [PMID: 34331854 PMCID: PMC8792112 DOI: 10.1016/j.chembiol.2021.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
N-glycans are displayed on cell-surface proteins and can engage in direct binding interactions with membrane-bound and secreted glycan-binding proteins (GBPs). Biochemical identification and characterization of glycan-mediated interactions is often made difficult by low binding affinities. Here we describe the metabolic introduction of a diazirine photo-cross-linker onto N-acetylglucosamine (GlcNAc) residues of N-linked glycoproteins on cell surfaces. We characterize sites at which diazirine-modified GlcNAc is incorporated, as well as modest perturbations to glycan structure. We show that diazirine-modified GlcNAc can be used to covalently cross-link two extracellular GBPs, galectin-1 and cholera toxin subunit B, to cell-surface N-linked glycoproteins. The extent of cross-linking correlates with display of the preferred glycan ligands for the GBPs. In addition, covalently cross-linked complexes could be isolated, and protein components of cross-linked N-linked glycoproteins were identified by proteomics analysis. This method may be useful in the discovery and characterization of binding interactions that depend on N-glycans.
Collapse
Affiliation(s)
- Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA,current affiliation: Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605
| | - Emanuela Capota
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA,Lead Contact:
| |
Collapse
|
10
|
Cioce A, Bineva-Todd G, Agbay AJ, Choi J, Wood TM, Debets MF, Browne WM, Douglas HL, Roustan C, Tastan OY, Kjaer S, Bush JT, Bertozzi CR, Schumann B. Optimization of Metabolic Oligosaccharide Engineering with Ac 4GalNAlk and Ac 4GlcNAlk by an Engineered Pyrophosphorylase. ACS Chem Biol 2021. [PMID: 33835779 DOI: 10.1021/acschem-bio.1c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.
Collapse
Affiliation(s)
- Anna Cioce
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Anthony J Agbay
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas M Wood
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marjoke F Debets
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - William M Browne
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Holly L Douglas
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Omur Y Tastan
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jacob T Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY United Kingdom
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, 380 Roth Way, Stanford, California 94305, United States
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| |
Collapse
|
11
|
Cioce A, Bineva-Todd G, Agbay AJ, Choi J, Wood TM, Debets MF, Browne WM, Douglas HL, Roustan C, Tastan OY, Kjaer S, Bush JT, Bertozzi CR, Schumann B. Optimization of Metabolic Oligosaccharide Engineering with Ac 4GalNAlk and Ac 4GlcNAlk by an Engineered Pyrophosphorylase. ACS Chem Biol 2021; 16:1961-1967. [PMID: 33835779 PMCID: PMC8501146 DOI: 10.1021/acschembio.1c00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Metabolic oligosaccharide
engineering (MOE) has fundamentally contributed
to our understanding of protein glycosylation. Efficient MOE reagents
are activated into nucleotide-sugars by cellular biosynthetic machineries,
introduced into glycoproteins and traceable by bioorthogonal chemistry.
Despite their widespread use, the metabolic fate of many MOE reagents
is only beginning to be mapped. While metabolic interconnectivity
can affect probe specificity, poor uptake by biosynthetic salvage
pathways may impact probe sensitivity and trigger side reactions.
Here, we use metabolic engineering to turn the weak alkyne-tagged
MOE reagents Ac4GalNAlk and Ac4GlcNAlk into
efficient chemical tools to probe protein glycosylation. We find that
bypassing a metabolic bottleneck with an engineered version of the
pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases
bioorthogonal cell surface labeling by up to two orders of magnitude.
A comparison with known azide-tagged MOE reagents reveals major differences
in glycoprotein labeling, substantially expanding the toolbox of chemical
glycobiology.
Collapse
Affiliation(s)
- Anna Cioce
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Anthony J. Agbay
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas M. Wood
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marjoke F. Debets
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - William M. Browne
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Holly L. Douglas
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Omur Y. Tastan
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY United Kingdom
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, 380 Roth Way, Stanford, California 94305, United States
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ London, United Kingdom
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| |
Collapse
|
12
|
Gao Z, Tang R, Ma S, Jia S, Zhang S, Gong B, Ou J. Design and construction of a hydrophilic coating on macroporous adsorbent resins for enrichment of glycopeptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4515-4527. [PMID: 34515267 DOI: 10.1039/d1ay01276b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although macroporous adsorbent resins (MARs) have been commercialized and widely applied in industrial and life fields, it is still of necessity to develop simple approaches to functionalize MARs. One of the most widely used methods to realize excellent fouling resistance performance is surface modification of hydrophilic polymers on substrates to fabricate an anti-biofouling coating. Herein, three kinds of hydrophilic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) MAR were designed and facilely prepared by coating a layer of porous organic polymers (POPs) via either an epoxy-amine ring-opening polymerization or amine-aldehyde condensation reaction using isophthalaldehyde (IPA), 1,4,7,10-tetraazacyclododecane (cyclen), melamine and 1,3,5-triglycidyl isocyanurate (TGIC) as precursors. By taking advantage of their merits, such as large surface area, excellent hydrophilicity and unbiased affinity toward all types of glycopeptide, three functionalized hydrophilic MARs were successfully applied to capture glycopeptides from complex samples as hydrophilic interaction liquid chromatography (HILIC) sorbents. A total of 694 N-glycopeptides and 372 N-glycosylation sites were identified from 2 μL of human serum digest with poly(TC)@MAR, which were not only more than those of poly(MT)@MAR (286 N-glycosylation sites and 547 N-glycopeptides) and poly(IM)@MAR (669 N-glycopeptides and 355 N-glycosylation sites), but also more than those of other reported HILIC materials. This work provided a new and simple way to synthesize enrichment materials for liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis of glycoproteomes.
Collapse
Affiliation(s)
- Zheng Gao
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Argüeso P, Woodward AM, AbuSamra DB. The Epithelial Cell Glycocalyx in Ocular Surface Infection. Front Immunol 2021; 12:729260. [PMID: 34497615 PMCID: PMC8419333 DOI: 10.3389/fimmu.2021.729260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
The glycocalyx is the main component of the transcellular barrier located at the interface between the ocular surface epithelia and the external environment. This barrier extends up to 500 nm from the plasma membrane and projects into the tear fluid bathing the surface of the eye. Under homeostatic conditions, defense molecules in the glycocalyx, such as transmembrane mucins, resist infection. However, many pathogenic microorganisms have evolved to exploit components of the glycocalyx in order to gain access to epithelial cells and consequently exert deleterious effects. This manuscript reviews the implications of the ocular surface epithelial glycocalyx to bacterial, viral, fungal and parasitic infection. Moreover, it presents some ongoing controversies surrounding the functional relevance of the epithelial glycocalyx to ocular infectious disease.
Collapse
Affiliation(s)
- Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ashley M Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Calle B, Bineva-Todd G, Marchesi A, Flynn H, Ghirardello M, Tastan OY, Roustan C, Choi J, Galan MC, Schumann B, Malaker SA. Benefits of Chemical Sugar Modifications Introduced by Click Chemistry for Glycoproteomic Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2366-2375. [PMID: 33871988 PMCID: PMC7611619 DOI: 10.1021/jasms.1c00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.
Collapse
Affiliation(s)
- Beatriz Calle
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Andrea Marchesi
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Omur Y. Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - M. Carmen Galan
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT 06511, United States
| |
Collapse
|
15
|
Wang M, Shajahan A, Pepi LE, Azadi P, Zaia J. Glycoproteomic Sample Processing, LC-MS, and Data Analysis Using GlycReSoft. Curr Protoc 2021; 1:e84. [PMID: 33761173 DOI: 10.1002/cpz1.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of N- and O-glycosylation on specific sites of proteins, along with glycan structural information, is necessary to determine the roles glycoproteins play in normal and pathologic cellular functions. Because such glycosylation is macro- and micro-heterogeneous and alters the dissociation behavior of glycopeptides, specific sample preparation, mass spectrometry, and data analysis techniques are required. Advanced tandem mass spectrometry-based glycoproteomics coupled with powerful data mining algorithms are key elements for characterization of protein glycosylation. This article includes the detailed, streamlined sample preparation method for liquid chromatography-mass spectrometry data acquisition and subsequent bioinformatics-based data annotation using the publicly available GlycReSoft program for highly efficient identification and quantification of glycoprotein glycosylation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Characterization of glycans and site occupancy on purified glycoprotein Support Protocol 1: In-gel digestion of glycoproteins Support Protocol 2: Detection of glycoproteins from cells/tissue through glycopeptide enrichment Basic Protocol 2: Acquisition of glycopeptides through high-resolution nano-LC-MS/MS Basic Protocol 3: Identification and quantification of glycopeptides using GlycReSoft.
Collapse
Affiliation(s)
- Meizhe Wang
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Joseph Zaia
- Department of Biochemistry, Boston University, Boston, Massachusetts.,Bioinformatics Program, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts
| |
Collapse
|
16
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
17
|
Jin X, Zhu C, Wu J, Yan Y, Ding CF, Tang K, Zhang D. Hydrophilic carrageenan functionalized magnetic carbon-based framework linked by silane coupling agent for the enrichment of N-glycopeptides from human saliva. J Sep Sci 2021; 44:2143-2152. [PMID: 33734567 DOI: 10.1002/jssc.202001216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
In this work, a magnetic graphene material coated with mesoporous silica was selected as the substrate, 3-glycidoxypropyltrimethoxysilane and polyethyleneimine were sequentially bonded through chemical reactions, and then carrageenan was successfully introduced by electrostatic interaction; finally, hydrophilic nanocomposite material was prepared. Due to the large number of hydrophilic groups, and polyethyleneimine was connected by means of chemical bonds, this material exhibits good hydrophilicity and stability for glycopeptide enrichment. In the actual enrichment process, nanomaterial exhibits high selectivity (1:500), high sensitivity (2 fmol), and good repeatability (five cycles). In addition, the synthesized material also shows a good enrichment effect in the face of actual complex biological samples, which captured 40 N-glycopeptides from human saliva, indicating the application potential for enrichment of N-glycopeptides.
Collapse
Affiliation(s)
- Xueting Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Canhong Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, P. R. China
| | - Di Zhang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, P. R. China
| |
Collapse
|
18
|
Wang M, Shajahan A, Pepi LE, Azadi P, Zaia J. Glycoproteomic Sample Processing, LC-MS, and Data Analysis Using GlycReSoft. Curr Protoc 2021. [PMID: 33761173 DOI: 10.1002/cpz1001.1084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Identification of N- and O-glycosylation on specific sites of proteins, along with glycan structural information, is necessary to determine the roles glycoproteins play in normal and pathologic cellular functions. Because such glycosylation is macro- and micro-heterogeneous and alters the dissociation behavior of glycopeptides, specific sample preparation, mass spectrometry, and data analysis techniques are required. Advanced tandem mass spectrometry-based glycoproteomics coupled with powerful data mining algorithms are key elements for characterization of protein glycosylation. This article includes the detailed, streamlined sample preparation method for liquid chromatography-mass spectrometry data acquisition and subsequent bioinformatics-based data annotation using the publicly available GlycReSoft program for highly efficient identification and quantification of glycoprotein glycosylation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Characterization of glycans and site occupancy on purified glycoprotein Support Protocol 1: In-gel digestion of glycoproteins Support Protocol 2: Detection of glycoproteins from cells/tissue through glycopeptide enrichment Basic Protocol 2: Acquisition of glycopeptides through high-resolution nano-LC-MS/MS Basic Protocol 3: Identification and quantification of glycopeptides using GlycReSoft.
Collapse
Affiliation(s)
- Meizhe Wang
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Joseph Zaia
- Department of Biochemistry, Boston University, Boston, Massachusetts
- Bioinformatics Program, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts
| |
Collapse
|
19
|
Suttapitugsakul S, Tong M, Sun F, Wu R. Enhancing Comprehensive Analysis of Secreted Glycoproteins from Cultured Cells without Serum Starvation. Anal Chem 2021; 93:2694-2705. [PMID: 33397101 PMCID: PMC8034805 DOI: 10.1021/acs.analchem.0c05126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycoproteins secreted by cells play essential roles in the regulation of extracellular activities. Secreted glycoproteins are often reflective of cellular status, and thus glycoproteins from easily accessible bodily fluids can serve as excellent biomarkers for disease detection. Cultured cells have been extensively employed as models in the research fields of biology and biomedicine, and global analysis of glycoproteins secreted from these cells provides insights into cellular activities and glycoprotein functions. However, comprehensive identification and quantification of secreted glycoproteins is a daunting task because of their low abundances compared with the high-abundance serum proteins required for cell growth and proliferation. Several studies employed serum-free media to analyze secreted proteins, but it has been shown that serum starvation, even for a short period of time, can alter protein secretion. To overcome these issues, we developed a method to globally characterize secreted glycoproteins and their N-glycosylation sites from cultured cells by combining selective enrichment of secreted glycoproteins with a boosting approach. The results demonstrated the importance of the boosting sample selection and the boosting-to-sample ratio for improving the coverage of secreted glycoproteins. The method was applied to globally quantify secreted glycoproteins from THP-1 monocytes and macrophages in response to lipopolysaccharides (LPS) and from Hep G2 cells treated with TGF-β without serum starvation. We found differentially secreted glycoproteins in these model systems that showed the cellular response to the immune activation or the epithelial-to-mesenchymal transition. Benefiting from the selective enrichment and the signal enhancement of low-abundance secreted glycoproteins, this method can be extensively applied to study secreted glycoproteins without serum starvation, which will provide a better understanding of protein secretion and cellular activity.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|