1
|
Zhou J, Wang D, Wu Q, Jiang Y, Yan J, Wu L, Li S, Niu X. Rare NRPS Gene Cluster for Desferriferrichrome Biosynthesis Controls the Conflict between Trap Formation and Nematicidal Activity in Arthrobotrys oligospora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3560-3571. [PMID: 38340066 DOI: 10.1021/acs.jafc.3c08354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.
Collapse
Affiliation(s)
- Jiao Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - DongLou Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - QunFu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Yang Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - JunXian Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - Li Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - ShuHong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| | - XueMei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
2
|
Were E, Viljoen A, Rasche F. Iron necessity for chlamydospore germination in Fusarium oxysporum f. sp. cubense TR4. Biometals 2023; 36:1295-1306. [PMID: 37380939 PMCID: PMC10684721 DOI: 10.1007/s10534-023-00519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Fusarium wilt disease of banana, caused by the notorious soil-borne pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is extremely difficult to manage. Manipulation of soil pH or application of synthetic iron chelators can suppress the disease through iron starvation, which inhibits the germination of pathogen propagules called chlamydospores. However, the effect of iron starvation on chlamydospore germination is largely unknown. In this study, scanning electron microscopy was used to assemble the developmental sequence of chlamydospore germination and to assess the effect of iron starvation and pH in vitro. Germination occurs in three distinct phenotypic transitions (swelling, polarized growth, outgrowth). Outgrowth, characterized by formation of a single protrusion (germ tube), occurred at 2 to 3 h, and a maximum value of 69.3% to 76.7% outgrowth was observed at 8 to 10 h after germination induction. Germination exhibited plasticity with pH as over 60% of the chlamydospores formed a germ tube between pH 3 and pH 11. Iron-starved chlamydospores exhibited polarized-growth arrest, characterized by the inability to form a germ tube. Gene expression analysis of rnr1 and rnr2, which encode the iron-dependent enzyme ribonucleotide reductase, showed that rnr2 was upregulated (p < 0.0001) in iron-starved chlamydospores compared to the control. Collectively, these findings suggest that iron and extracellular pH are crucial for chlamydospore germination in Foc TR4. Moreover, inhibition of germination by iron starvation may be linked to a different mechanism, rather than repression of the function of ribonucleotide reductase, the enzyme that controls growth by regulation of DNA synthesis.
Collapse
Affiliation(s)
- Evans Were
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70599, Stuttgart, Germany
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
3
|
Jenner M, Hai Y, Nguyen HH, Passmore M, Skyrud W, Kim J, Garg NK, Zhang W, Ogorzalek Loo RR, Tang Y. Elucidating the molecular programming of a nonlinear non-ribosomal peptide synthetase responsible for fungal siderophore biosynthesis. Nat Commun 2023; 14:2832. [PMID: 37198174 PMCID: PMC10192304 DOI: 10.1038/s41467-023-38484-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Siderophores belonging to the ferrichrome family are essential for the viability of fungal species and play a key role for virulence of numerous pathogenic fungi. Despite their biological significance, our understanding of how these iron-chelating cyclic hexapeptides are assembled by non-ribosomal peptide synthetase (NRPS) enzymes remains poorly understood, primarily due to the nonlinearity exhibited by the domain architecture. Herein, we report the biochemical characterization of the SidC NRPS, responsible for construction of the intracellular siderophore ferricrocin. In vitro reconstitution of purified SidC reveals its ability to produce ferricrocin and its structural variant, ferrichrome. Application of intact protein mass spectrometry uncovers several non-canonical events during peptidyl siderophore biosynthesis, including inter-modular loading of amino acid substrates and an adenylation domain capable of poly-amide bond formation. This work expands the scope of NRPS programming, allows biosynthetic assignment of ferrichrome NRPSs, and sets the stage for reprogramming towards novel hydroxamate scaffolds.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK.
| | - Yang Hai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA.
| | - Hong H Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
- Transmed Co., Ltd., Ho Chi Minh City, Vietnam
| | - Munro Passmore
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Will Skyrud
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, USA
- Arzeda, 3421 Thorndyke Ave W, Seattle, WA 98119, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, USA
| | | | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA
| |
Collapse
|
4
|
Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics (Basel) 2023; 12:antibiotics12010159. [PMID: 36671360 PMCID: PMC9854754 DOI: 10.3390/antibiotics12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bacteria, filamentous fungi, and plants synthesize thousands of secondary metabolites with important biological and pharmacological activities. The biosynthesis of these metabolites is performed by networks of complex enzymes such as non-ribosomal peptide synthetases, polyketide synthases, and terpenoid biosynthetic enzymes. The efficient production of these metabolites is dependent upon the supply of precursors that arise from primary metabolism. In the last decades, an impressive array of biosynthetic enzymes that provide specific precursors and intermediates leading to secondary metabolites biosynthesis has been reported. Suitable knowledge of the elaborated pathways that synthesize these precursors or intermediates is essential for advancing chemical biology and the production of natural or semisynthetic biological products. Two of the more prolific routes that provide key precursors in the biosynthesis of antitumor, immunosuppressant, antifungal, or antibacterial compounds are the lysine and ornithine pathways, which are involved in the biosynthesis of β-lactams and other non-ribosomal peptides, and bacterial and fungal siderophores. Detailed analysis of the molecular genetics and biochemistry of the enzyme system shows that they are formed by closely related components. Particularly the focus of this study is on molecular genetics and the enzymatic steps that lead to the formation of intermediates of the lysine pathway, such as α-aminoadipic acid, saccharopine, pipecolic acid, and related compounds, and of ornithine-derived molecules, such as N5-Acetyl-N5-Hydroxyornithine and N5-anhydromevalonyl-N5-hydroxyornithine, which are precursors of siderophores. We provide evidence that shows interesting functional relationships between the genes encoding the enzymes that synthesize these products. This information will contribute to a better understanding of the possibilities of advancing the industrial applications of synthetic biology.
Collapse
|
5
|
Distinguishing Invasive from Chronic Pulmonary Infections: Host Pentraxin 3 and Fungal Siderophores in Bronchoalveolar Lavage Fluids. J Fungi (Basel) 2022; 8:jof8111194. [PMID: 36422015 PMCID: PMC9694386 DOI: 10.3390/jof8111194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The multiple forms of pulmonary aspergillosis caused by Aspergillus species are the most common respiratory mycoses. Although invasive, the analysis of diagnostic biomarkers in bronchoalveolar lavage fluid (BALF) is a clinical standard for diagnosing these conditions. The BALF samples from 22 patients with proven or probable aspergillosis were assayed for human pentraxin 3 (Ptx3), fungal ferricrocin (Fc), and triacetylfusarinine C (TafC) in a retrospective study. The infected group included patients with invasive pulmonary aspergillosis (IPA) and chronic aspergillosis (CPA). The BALF data were compared to a control cohort of 67 patients with invasive pulmonary mucormycosis (IPM), non-Aspergillus colonization, or bacterial infections. The median Ptx3 concentrations in patients with and without aspergillosis were 4545.5 and 242.0 pg/mL, respectively (95% CI, p < 0.05). The optimum Ptx3 cutoff for IPA was 2545 pg/mL, giving a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100, 98, 95, and 100%, respectively. The median Ptx3 concentration for IPM was high at 4326 pg/mL. Pentraxin 3 assay alone can distinguish IPA from CPA and invasive fungal disease from colonization. Combining Ptx3 and TafC assays enabled the diagnostic discrimination of IPM and IPA, giving a specificity and PPV of 100%.
Collapse
|
6
|
Chiu PC, Nakamura Y, Nishimura S, Tabuchi T, Yashiroda Y, Hirai G, Matsuyama A, Yoshida M. Ferrichrome, a fungal-type siderophore, confers high ammonium tolerance to fission yeast. Sci Rep 2022; 12:17411. [PMID: 36302945 PMCID: PMC9613971 DOI: 10.1038/s41598-022-22108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms and plants produce siderophores, which function to transport environmental iron into cells as well as participate in cellular iron use and deposition. Their biological functions are diverse although their role in primary metabolism is poorly understood. Ferrichrome is a fungal-type siderophore synthesized by nonribosomal peptide synthetase (NRPS). Herein we show that ferrichrome induces adaptive growth of fission yeast on high ammonium media. Ammonium is a preferred nitrogen source as it suppresses uptake and catabolism of less preferred nitrogen sources such as leucine through a mechanism called nitrogen catabolite repression (NCR). Therefore, the growth of fission yeast mutant cells with leucine auxotrophy is suppressed in the presence of high concentrations of ammonium. This growth suppression was canceled by ferrichrome in a manner dependent on the amino acid transporter Cat1. Additionally, growth retardation of wild-type cells by excess ammonium was exacerbated by deleting the NRPS gene sib1, which is responsible for the biosynthesis of ferrichrome, suggesting that intrinsically produced ferrichrome functions in suppressing the metabolic action of ammonium. Furthermore, ferrichrome facilitated the growth of both wild-type and sib1-deficient cells under low glucose conditions. These results suggest that intracellular iron regulates primary metabolism, including NCR, which is mediated by siderophores.
Collapse
Affiliation(s)
- Po-Chang Chiu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yuri Nakamura
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shinichi Nishimura
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Toshitsugu Tabuchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Go Hirai
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihisa Matsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Asamizu S, Pramana AAC, Kawai SJ, Arakawa Y, Onaka H. Comparative Metabolomics Reveals a Bifunctional Antibacterial Conjugate from Combined-Culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. ACS Chem Biol 2022; 17:2664-2672. [PMID: 36074093 DOI: 10.1021/acschembio.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To investigate the potential for secondary metabolite biosynthesis by Streptomyces species, we employed a coculture method to discover natural bioactive products and identified specific antibacterial activity from a combined-culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. Molecular networking using ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) data revealed a specific clade of metabolites in this combined-culture that were not detected in both monocultures. Using the chemical profiles, a previously unidentified conjugate between FabF inhibitor and catechol-type siderophore was successfully identified and named harundomycin A. Harundomycin A was a conjugate between the 2,4-dihydroxy-3-aminobenzoate moiety of platensimycin and N,N'-bis(2,3-dihydroxybenzoyl)-O-seryl-cysteine (bisDHBA-Ser-Cys) with a thioester linkage. Along with the production of harundomycin A, platensimycin, its thiocarboxylic acid form thioplatensimycin, enterobactin, and its degradation product N,N'-bis(2,3-dihydroxybenzoyl)-O-l-seryl-dehydroalanine (bisDHBA-Ser-Dha) were also induced in the combined-culture. Genomic data of S. hygroscopicus HOK021 and T. pulmonis TP-B0596 indicated that strain HOK021 possessed biosynthetic gene clusters for both platensimycin and enterobactin, and thereby revealed that T. pulmonis stimulates HOK021 and acts as an inducer of both of these metabolites. Although the harundomycin A was modified by bulky bisDHBA-Ser-Cys, responsible for the binding to the target molecule FabF, it showed a similar antibacterial spectrum to platensimycin, including against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, suggesting that the pharmacophore is platensimycin. Additionally, Chrome Azurol S assay showed that harundomycin A possesses ferric iron-chelating activity comparable to that of enterobactin. Our study demonstrated the transformation of existing natural products to bifunctional molecules driven by bacterial interaction.
Collapse
Affiliation(s)
- Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Abrory Agus Cahya Pramana
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Sung-Jin Kawai
- New Field Pioneering Division, Toyota Boshoku Corporation, 1-1 Toyoda, Kariya, Aichi 448-8651, Japan
| | - Yoshichika Arakawa
- Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
GR-2397: Review of the Novel Siderophore-like Antifungal Agent for the Treatment of Invasive Aspergillosis. J Fungi (Basel) 2022; 8:jof8090909. [PMID: 36135634 PMCID: PMC9502624 DOI: 10.3390/jof8090909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
GR-2397 (previously VL-2397, ASP2397) is a first-in-class antifungal agent for the treatment of invasive aspergillosis. This siderophore-like molecule resembles ferrichrome; however, it is differentiated by three amino acid changes and an aluminum rather than iron chelate. GR-2397 is transported into fungal cells via the Sit1 transporter, which is not found in humans, leading to fungal specificity. Although the precise mechanism of action is currently unknown, GR-2397 is active against Aspergillus spp. including azole-resistant strains, Fusarium solani, and Candida glabrata in addition to other organisms. Efficacy has been demonstrated in several animal models of invasive aspergillosis, including a 24 h delayed-treatment model where rapid fungicidal activity was observed. Phase 1 single- and multiple-ascending intravenous dose studies showed that GR-2397 was safe and well-tolerated in humans. No signs of GR-2397 accumulation were observed following IV infusions of 300, 600, and 1200 mg every 24 h (q24h) for 7 days. The favorable safety, tolerability and drug–drug interaction profile, along with good tissue distribution, support further development of GR-2397 as a new treatment option for patients with invasive aspergillosis. This systematic review summarizes the published findings of GR-2397.
Collapse
|
9
|
Biosynthesis and Chemical Synthesis of Albomycin Nucleoside Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11040438. [PMID: 35453190 PMCID: PMC9032320 DOI: 10.3390/antibiotics11040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria highlights the urgent need for new antimicrobial agents. Albomycins are a group of naturally occurring sideromycins with a thionucleoside antibiotic conjugated to a ferrichrome-type siderophore. The siderophore moiety serves as a vehicle to deliver albomycins into bacterial cells via a “Trojan horse” strategy. Albomycins function as specific inhibitors of seryl-tRNA synthetases and exhibit potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, including many clinical pathogens. These distinctive features make albomycins promising drug candidates for the treatment of various bacterial infections, especially those caused by multidrug-resistant pathogens. We herein summarize findings on the discovery and structure elucidation, mechanism of action, biosynthesis and immunity, and chemical synthesis of albomcyins, with special focus on recent advances in the biosynthesis and chemical synthesis over the past decade (2012–2022). A thorough understanding of the biosynthetic pathway provides the basis for pathway engineering and combinatorial biosynthesis to create new albomycin analogues. Chemical synthesis of natural congeners and their synthetic analogues will be useful for systematic structure–activity relationship (SAR) studies, and thereby assist the design of novel albomycin-derived antimicrobial agents.
Collapse
|