1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Pepanian A, Binbay FA, Pei D, Imhof D. Design, synthesis, and analysis of macrobicyclic peptides for targeting the Gαi protein. J Pept Sci 2024; 30:e3565. [PMID: 38232955 PMCID: PMC11065574 DOI: 10.1002/psc.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Bicyclic peptides are important chemical tools that can function, for example, as bioactive ligands switching on/off signaling pathways mediated by guanine nucleotide-binding proteins as bicycles are more broadly applicable. Despite their relevance in medicinal chemistry, the synthesis of such peptides is challenging, and the final yield is highly dependent on the chemical composition and physicochemical properties of the scaffold. We recently discovered novel, state-specific peptide modulators targeting the Gαi protein, namely, GPM-2/GPM-3, by screening a one-bead-two-compound combinatorial library. A more detailed analysis, including sequence alignments and computer-assisted conformational studies based on the hit compounds, revealed the new peptide 10 as a potential macrobicyclic Gαi ligand sharing high sequence similarity to the known Gαi modulators. The Gαs protein was included in this study for comparison and to unravel the criteria for the specificity of modulator binding to Gαi versus Gαs. This work provides in-depth computer-assisted experimental studies for the analysis of novel macrobicyclic, library-derived Gαi protein ligands. The sequence and structural comparison of 10 with the lead compounds GPM-2 and GPM-3 reveals the importance of the size and amino acid composition of one ring of the bicyclic system and suggests features enhancing the binding affinity of the peptides to the Gαi protein.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F. Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
4
|
Pepanian A, Sommerfeld P, Binbay FA, Fischer D, Pietsch M, Imhof D. In-depth analysis of Gαs protein activity by probing different fluorescently labeled guanine nucleotides. Biol Chem 2024; 405:297-309. [PMID: 38353111 DOI: 10.1515/hsz-2023-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 05/04/2024]
Abstract
G proteins are interacting partners of G protein-coupled receptors (GPCRs) in eukaryotic cells. Upon G protein activation, the ability of the Gα subunit to exchange GDP for GTP determines the intracellular signal transduction. Although various studies have successfully shown that both Gαs and Gαi have an opposite effect on the intracellular cAMP production, with the latter being commonly described as "more active", the functional analysis of Gαs is a comparably more complicated matter. Additionally, the thorough investigation of the ubiquitously expressed variants of Gαs, Gαs(short) and Gαs(long), is still pending. Since the previous experimental evaluation of the activity and function of the Gαs isoforms is not consistent, the focus was laid on structural investigations to understand the GTPase activity. Herein, we examined recombinant human Gαs by applying an established methodological setup developed for Gαi characterization. The ability for GTP binding was evaluated with fluorescence and fluorescence anisotropy assays, whereas the intrinsic hydrolytic activity of the isoforms was determined by a GTPase assay. Among different nucleotide probes, BODIPY FL GTPγS exhibited the highest binding affinity towards the Gαs subunit. This work provides a deeper understanding of the Gαs subunit and provides novel information concerning the differences between the two protein variants.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Paul Sommerfeld
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Dietmar Fischer
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, D-51379 Leverkusen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
5
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Binbay FA, Rathod DC, George AAP, Imhof D. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals (Basel) 2023; 16:1662. [PMID: 38139789 PMCID: PMC10747200 DOI: 10.3390/ph16121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
With technology advancing, many prediction algorithms have been developed to facilitate the modeling of inherently dynamic and flexible macromolecules such as proteins. Improvements in the prediction of protein structures have attracted a great deal of attention due to the advantages they offer, e.g., in drug design. While trusted experimental methods, such as X-ray crystallography, NMR spectroscopy, and electron microscopy, are preferred structure analysis techniques, in silico approaches are also being widely used. Two computational methods, which are on opposite ends of the spectrum with respect to their modus operandi, i.e., homology modeling and AlphaFold, have been established to provide high-quality structures. Here, a comparative study of the quality of structures either predicted by homology modeling or by AlphaFold is presented based on the characteristics determined by experimental studies using structure validation servers to fulfill the purpose. Although AlphaFold is able to predict high-quality structures, high-confidence parts are sometimes observed to be in disagreement with experimental data. On the other hand, while the structures obtained from homology modeling are successful in incorporating all aspects of the experimental structure used as a template, this method may struggle to accurately model a structure in the absence of a suitable template. In general, although both methods produce high-quality models, the criteria by which they are superior to each other are different and thus discussed in detail.
Collapse
Affiliation(s)
- Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Dhruv Chetanbhai Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
7
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
8
|
Pepanian A, Sommerfeld P, Kasprzyk R, Kühl T, Binbay FA, Hauser C, Löser R, Wodtke R, Bednarczyk M, Chrominski M, Kowalska J, Jemielity J, Imhof D, Pietsch M. Fluorescence Anisotropy Assay with Guanine Nucleotides Provides Access to Functional Analysis of Gαi1 Proteins. Anal Chem 2022; 94:14410-14418. [PMID: 36206384 DOI: 10.1021/acs.analchem.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Paul Sommerfeld
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Christoph Hauser
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.,Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|