1
|
You Y, Zhang XJ, Xiao W, Kunthic T, Xiang Z, Xu C. Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis. Chem Sci 2024; 15:19307-19314. [PMID: 39568920 PMCID: PMC11575645 DOI: 10.1039/d4sc06060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Merging the advantages of biocatalysis and chemocatalysis in retrosynthetic analysis can significantly improve the efficiency and selectivity of natural product synthesis. Here, we describe a unified approach for the synthesis of drimane meroterpenoids by combining heterologous biosynthesis, enzymatic hydroxylation, and transition metal catalysis. In phase one, drimenol was produced by engineering a biosynthetic pathway in Escherichia coli. Cytochrome P450BM3 from Bacillus megaterium was engineered to catalyze the C-3 hydroxylation of drimenol. By means of nickel-catalyzed reductive coupling, six drimane meroterpenoids (+)-hongoquercins A and B, (+)-ent-chromazonarol, 8-epi-puupehenol, (-)-pelorol, and (-)-mycoleptodiscin A were synthesized in a concise and enantiospecific manner. This strategy offers facile access to the congeners of the drimane meroterpenoid family and lays the foundation for activity optimization.
Collapse
Affiliation(s)
- Yipeng You
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| | - Xue-Jie Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center Guangqiao Road, Guangming District Shenzhen 518132 P. R. China
| | - Chen Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| |
Collapse
|
2
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Zhang M, Zhao L, Tang F, Gao JM, Qi J. Chemical Structures, Biological Activities, and Biosynthetic Analysis of Secondary Metabolites from Agaricus Mushrooms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12387-12397. [PMID: 38776247 DOI: 10.1021/acs.jafc.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Agaricus mushrooms are an important genus in the Agaricaceae family, belonging to the order Agaricales of the class Basidiomycota. Among them, Agaricus bisporus is a common mushroom for mass consumption, which is not only nutritious but also possesses significant medicinal properties such as anticancer, antibacterial, antioxidant, and immunomodulatory properties. The rare edible mushroom, Agaricus blazei, contains unique agaricol compounds with significant anticancer activity against liver cancer. Agaricus blazei is believed to expel wind and cold, i.e., the pathogenic factors of wind and cold from the body, and is an important formula in traditional Chinese medicine. Despite its nutritional richness and outstanding medicinal value, Agaricus mushrooms have not been systematically compiled and summarized. Therefore, the present review compiles and classifies 70 natural products extracted from Agaricus mushrooms over the past six decades. These compounds exhibit diverse biological and pharmacological activities, with particular emphasis on antitumor and antioxidant properties. While A. blazei and A. bisporus are the primary producers of these compounds, studies on secondary metabolites from other Agaricus species remain limited. Further research is needed to explore and understand the anticancer and nutritional properties of Agaricus mushrooms. This review contributes to the understanding of the structure, bioactivity, and biosynthetic pathways of Agaricus compounds and provides insights for the development of functional foods using these mushrooms.
Collapse
Affiliation(s)
- Ming Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ling Zhao
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Fei Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an 710077, China
| |
Collapse
|
4
|
Zhang D, Du W, Pan X, Lin X, Li FR, Wang Q, Yang Q, Xu HM, Dong LB. Discovery and biosynthesis of bacterial drimane-type sesquiterpenoids from Streptomyces clavuligerus. Beilstein J Org Chem 2024; 20:815-822. [PMID: 38655553 PMCID: PMC11035983 DOI: 10.3762/bjoc.20.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Drimane-type sesquiterpenoids (DMTs) are characterized by a distinctive 6/6 bicyclic skeleton comprising the A and B rings. While DMTs are commonly found in fungi and plants, their presence in bacteria has not been reported. Moreover, the biosynthetic pathways for DMTs have been primarily elucidated in fungi, with identified P450s only acting on the B ring. In this study, we isolated and characterized three bacterial DMTs, namely 3β-hydroxydrimenol (2), 2α-hydroxydrimenol (3), and 3-ketodrimenol (4), from Streptomyces clavuligerus. Through genome mining and heterologous expression, we identified a cav biosynthetic gene cluster responsible for the biosynthesis of DMTs 2-4, along with a P450, CavA, responsible for introducing the C-2 and C-3 hydroxy groups. Furthermore, the substrate scope of CavA revealed its ability to hydroxylate drimenol analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria.
Collapse
Affiliation(s)
- Dongxu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingling Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Nie S, Wang S, Chen R, Ge M, Yan X, Qiao J. Catalytic Mechanism and Heterologous Biosynthesis Application of Sesquiterpene Synthases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6871-6888. [PMID: 38526460 DOI: 10.1021/acs.jafc.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.
Collapse
Affiliation(s)
- Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingyue Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
6
|
Chagas FO, Garrido LM, Conti R, Borges RM, Bielinski VA, Padilla G, Pupo MT. Unusual Sesquiterpenes from Streptomyces olindensis DAUFPE 5622. JOURNAL OF NATURAL PRODUCTS 2024; 87:491-500. [PMID: 38422010 DOI: 10.1021/acs.jnatprod.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In nature, the vast majority of sesquiterpenes are produced by type I mechanisms, and glycosylated sesquiterpenes are rare in actinobacteria. Streptomyces olindensis DAUFPE 5622 produces the sesquiterpenes olindenones A-G, a new class of rearranged drimane sesquiterpenes. Olindenones B-D are oxygenated derivatives of olindenone A, while olindenones E-G are analogs glycosylated with dideoxysugars. 13C-isotope labeling studies demonstrated olindenone A biosynthesis occurs via the methylerythritol phosphate (MEP) pathway and suggested the rearrangement is only partially concerted. Based on the structures, one potential mechanism of olindenone A formation proceeds by cyclization of the linear terpenoid precursor, likely occurring via a terpene cyclase-mediated type II mechanism whereby the terminal alkene of the precursor is protonated, triggering carbocation-driven cyclization followed by rearrangement. Diphosphate hydrolysis may occur either before or after cyclization. Although a biosynthetic route is proposed, the terpene cyclase gene responsible for producing olindenones currently remains unidentified.
Collapse
Affiliation(s)
- Fernanda O Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 05508-070, Brazil
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Leandro M Garrido
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-070, Brazil
| | - Raphael Conti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 05508-070, Brazil
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, California 92037, United States
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Gabriel Padilla
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-070, Brazil
| | - Mônica T Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 05508-070, Brazil
| |
Collapse
|
7
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Chen TH, Lin HC. Terpene Synthases in the Biosynthesis of Drimane-Type Sesquiterpenes across Diverse Organisms. Chembiochem 2023; 24:e202300518. [PMID: 37605310 DOI: 10.1002/cbic.202300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Drimane-type sesquiterpenes (DTSs) are significant terpenoid natural products characterized by their unique C15 bicyclic skeleton. They are produced by various organisms including plants, fungi, bacteria and marine organisms, and exhibit a diverse array of bioactivities. These bioactivities encompass antifeedant, anti-insecticidal, anti-bacterial, anti-fungal, anti-viral and anti-proliferative properties. Some DTSs contribute to the pungent flavor found in herb plants like water pepper, while others serve as active components responsible for the anti-cancer activities observed in medicinal mushrooms such as (-)-antrocin from Antrodia cinnamomea. Recently, DTS synthases have been identified in various organisms, biosynthesizing drimenol, drim-8-ene-11-ol and (+)-albicanol, which all possess the characteristic drimane skeleton. Interestingly, despite these enzymes producing chemical molecules with a drimane scaffold, they exhibit minimal amino acid sequence identity across different organisms. This Concept article focuses on the discovery of DTS synthases and the tailoring enzymes generating the chemical diversity of drimane natural products. We summarize and discuss their key features, including the chemical mechanisms, catalytic motifs and functional domains employed by these terpene synthases to generate DTS scaffolds.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
9
|
Chen TH, Chen CT, Lee CF, Huang RJ, Chen KL, Lu YC, Liang SY, Pham MT, Rao YK, Wu SH, Chein RJ, Lin HC. The Biosynthetic Gene Cluster of Mushroom-Derived Antrocin Encodes Two Dual-Functional Haloacid Dehalogenase-like Terpene Cyclases. Angew Chem Int Ed Engl 2023; 62:e202215566. [PMID: 36583947 DOI: 10.1002/anie.202215566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
(-)-Antrocin (1), produced by the medicinal mushroom Antrodia cinnamomea, is a potent antiproliferative compound. The biosynthetic gene cluster of 1 was identified, and the pathway was characterized by heterologous expression. We characterized a haloacid dehalogenase-like terpene cyclase AncC that biosynthesizes the drimane-type sesquiterpene (+)-albicanol (2) from farnesyl pyrophosphate (FPP). Biochemical characterization of AncC, including kinetic studies and mutagenesis, demonstrated the functions of two domains: a terpene cyclase (TC) and a pyrophosphatase (PPase). The TC domain first cyclizes FPP to albicanyl pyrophosphate, and the PPase domain then removes the pyrophosphate to form 2. Intriguingly, AncA (94 % sequence identity to AncC), in the same gene cluster, converts FPP into (R)-trans-γ-monocyclofarnesol instead of 2. Notably, Y283/F375 in the TC domain of AncA serve as a gatekeeper in controlling the formation of a cyclofarnesoid rather than a drimane-type scaffold.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Chien-Ting Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Chi-Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Rou-Jie Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C.,Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan R.O.C
| | - Kuan-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Yuan-Chun Lu
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Yerra Koteswara Rao
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| |
Collapse
|
10
|
Pan X, Du W, Zhang X, Lin X, Li FR, Yang Q, Wang H, Rudolf JD, Zhang B, Dong LB. Discovery, Structure, and Mechanism of a Class II Sesquiterpene Cyclase. J Am Chem Soc 2022; 144:22067-22074. [PMID: 36416740 PMCID: PMC10064485 DOI: 10.1021/jacs.2c09412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terpene cyclases (TCs), extraordinary enzymes that create the structural diversity seen in terpene natural products, are traditionally divided into two classes, class I and class II. Although the structural and mechanistic features of class I TCs are well-known, the corresponding details in class II counterparts have not been fully characterized. Here, we report the genome mining discovery and structural characterization of two class II sesquiterpene cyclases (STCs) from Streptomyces. These drimenyl diphosphate synthases (DMSs) are the first STCs shown to possess β,γ-didomain architecture. High-resolution X-ray crystal structures of DMS from Streptomyces showdoensis (SsDMS) in complex with both a farnesyl diphosphate and Mg2+ unveiled an induced-fit mechanism, with an unprecedented Mg2+ binding mode, finally solving one of the lingering questions in class II TC enzymology. This study supports continued genome mining for novel bacterial TCs and provides new mechanistic insights into canonical class II TCs that will lead to advances in TC engineering and synthetic biology.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|