1
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
2
|
Handke M, Beierlein F, Imhof P, Schiedel M, Hammann S. New fluorogenic triacylglycerols as sensors for dynamic measurement of lipid oxidation. Anal Bioanal Chem 2025; 417:287-296. [PMID: 39570389 PMCID: PMC11698881 DOI: 10.1007/s00216-024-05642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Lipids are major constituents of food but are also highly relevant substructures of drugs and are increasingly applied for the development of lipid-based drug delivery systems. Lipids are prone to oxidative degradation, thus affecting the quality of food or medicines. Therefore, analytical methods or tools that enable the degree of lipid oxidation to be assessed are of utmost importance to guarantee food and drug safety. Herein, we report the design, synthesis and application of the first-in-class fluorogenic triacylglycerols that enable dynamic monitoring of lipid oxidation via straightforward fluorescence readout. Our fluorogenic triacylglycerols can be used in both aqueous and lipid-based environments. Furthermore, we showed that the sensitivity of our fluorescent tracers towards oxidation could be tuned by incorporating either saturated or unsaturated acyl chains in their triacylglycerol core structure. With this, we provide a first proof of principle for the applicability of fluorescently labelled triacylglycerols as tracers to monitor the dynamics of lipid oxidation, thus paving the way for novel discoveries in the area of lipid analytics.
Collapse
Affiliation(s)
- Maria Handke
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
| | - Frank Beierlein
- Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen, 91052, Germany
- Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU), Martensstraße 1, Erlangen, 91058, Germany
| | - Petra Imhof
- Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen, 91052, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany.
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany.
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058, Germany.
- FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, Erlangen, 91058, Germany.
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, Stuttgart, 70599, Germany.
| |
Collapse
|
3
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Huber ME, Wurnig SL, Moumbock AFA, Toy L, Kostenis E, Alonso Bartolomé A, Szpakowska M, Chevigné A, Günther S, Hansen FK, Schiedel M. Development of a NanoBRET Assay Platform to Detect Intracellular Ligands for the Chemokine Receptors CCR6 and CXCR1. ChemMedChem 2024; 19:e202400284. [PMID: 38932712 DOI: 10.1002/cmdc.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
A conserved intracellular allosteric binding site (IABS) was recently identified at several G protein-coupled receptors (GPCRs). This target site allows the binding of allosteric modulators and enables a new mode of GPCR inhibition. Herein, we report the development of a NanoBRET-based assay platform based on the fluorescent ligand LT221 (5), to detect intracellular binding to CCR6 and CXCR1, two chemokine receptors that have been pursued as promising drug targets in inflammation and immuno-oncology. Our assay platform enables cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and straightforward manner. By combining this screening platform with a previously reported CXCR2 assay, we investigated CXCR1/CXCR2/CCR6 selectivity profiles for both known and novel squaramide analogues derived from navarixin, a known intracellular CXCR1/CXCR2 antagonist and phase II clinical candidate for the treatment of pulmonary diseases. By means of these studies we identified compound 10, a previously reported tert-butyl analogue of navarixin, as a low nanomolar intracellular CCR6 antagonist. Further, our assay platform clearly indicated intracellular binding of the CCR6 antagonist PF-07054894, currently evaluated in phase I clinical trials for the treatment of ulcerative colitis, thereby providing profound evidence for the existence and the pharmacological relevance of a druggable IABS at CCR6.
Collapse
Affiliation(s)
- Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Silas L Wurnig
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany
| | - Lara Toy
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, rue Henri Koch 29, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de l'Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, rue Henri Koch 29, 4354, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, rue Henri Koch 29, 4354, Esch-sur-Alzette, Luxembourg
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104, Freiburg, Germany
| | - Finn K Hansen
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
5
|
den Hollander LS, Beerkens BLH, Dekkers S, van Veldhoven JPD, Ortiz Zacarías NV, van der Horst C, Sieders EG, de Valk B, Wang J, IJzerman AP, van der Es D, Heitman LH. Labeling of CC Chemokine Receptor 2 with a Versatile Intracellular Allosteric Probe. ACS Chem Biol 2024; 19:2070-2080. [PMID: 39186040 PMCID: PMC11420878 DOI: 10.1021/acschembio.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Interest in affinity-based probes (AfBPs) as novel tools to interrogate G protein-coupled receptors (GPCRs) has gained traction in recent years. AfBPs represent an interesting and more versatile alternative to antibodies. In the present study, we report the development and validation of AfBPs that target the intracellular allosteric pocket of CCR2, a GPCR of interest for the development of therapies targeting autoimmune and inflammatory diseases and also cancer. Owing to the two-step labeling process of these CCR2 AfBPs through the incorporation of a click handle, we were successful in applying our most efficient probe in a variety of in vitro experiments and making use of multiple different detection techniques, such as SDS-PAGE and LC/MS-based proteomics. Collectively, this novel probe shows high selectivity, versatility, and applicability. Hence, this is a valuable alternative for CCR2-targeting antibodies and other traditional tool compounds and could aid in target validation and engagement in drug discovery.
Collapse
Affiliation(s)
- Lisa S den Hollander
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Bert L H Beerkens
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Sebastian Dekkers
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Jacobus P D van Veldhoven
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Natalia V Ortiz Zacarías
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Cas van der Horst
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Elisabeth G Sieders
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Bert de Valk
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Jianhui Wang
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Daan van der Es
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| | - Laura H Heitman
- Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, Leiden 2333 CC, The Netherlands
| |
Collapse
|
6
|
den Hollander LS, IJzerman AP, Heitman LH. Pharmacological characterization of allosteric modulators: A case for chemokine receptors. Med Res Rev 2024; 44:2291-2306. [PMID: 38634664 DOI: 10.1002/med.22043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Chemokine receptors are relevant targets for a multitude of immunological diseases, but drug attrition for these receptors is remarkably high. While many drug discovery programs have been pursued, most prospective drugs failed in the follow-up studies due to clinical inefficacy, and hence there is a clear need for alternative approaches. Allosteric modulators of receptor function represent an excellent opportunity for novel drugs, as they modulate receptor activation in a controlled manner and display increased selectivity, and their pharmacological profile can be insurmountable. Here, we discuss allosteric ligands and their pharmacological characterization for modulation of chemokine receptors. Ligands are included if (1) they show clear signs of allosteric modulation in vitro and (2) display evidence of binding in a topologically distinct manner compared to endogenous chemokines. We discuss how allosteric ligands affect binding of orthosteric (endogenous) ligands in terms of affinity as well as binding kinetics in radioligand binding assays. Moreover, their effects on signaling events in functional assays and how their binding site can be elucidated are specified. We substantiate this with examples of published allosteric ligands targeting chemokine receptors and hypothetical graphs of pharmacological behavior. This review should serve as an effective starting point for setting up assays for characterizing allosteric ligands to develop safer and more efficacious drugs for chemokine receptors and, ultimately, other G protein-coupled receptors.
Collapse
Affiliation(s)
- Lisa S den Hollander
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
| | - Laura H Heitman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands
- Oncode Institute, Leiden, The Netherlands
| |
Collapse
|
7
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
8
|
Kayastha K, Zhou Y, Brünle S. Structural perspectives on chemokine receptors. Biochem Soc Trans 2024; 52:1011-1024. [PMID: 38856028 PMCID: PMC11346446 DOI: 10.1042/bst20230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Yangli Zhou
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
9
|
Vogt H, Shinkwin P, Huber ME, Staffen N, Hübner H, Gmeiner P, Schiedel M, Weikert D. Development of a Fluorescent Ligand for the Intracellular Allosteric Binding Site of the Neurotensin Receptor 1. ACS Pharmacol Transl Sci 2024; 7:1533-1545. [PMID: 38751637 PMCID: PMC11092115 DOI: 10.1021/acsptsci.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The membrane protein family of G protein-coupled receptors (GPCRs) represents a major class of drug targets. Over the last years, the presence of additional intracellular binding sites besides the canonical orthosteric binding pocket has been demonstrated for an increasing number of GPCRs. Allosteric modulators harnessing these pockets may represent valuable alternatives when targeting the orthosteric pocket is not successful for drug development. Starting from SBI-553, a recently discovered intracellular allosteric modulator for neurotensin receptor subtype 1 (NTSR1), we developed the fluorescent molecular probe 14. Compound 14 binds to NTSR1 with an affinity of 0.68 μM in the presence of the agonist NT(8-13). NanoBRET-based ligand binding assays with 14 were established to derive the affinity and structure-activity relationships for allosteric NTSR1 modulators in a direct and nonisotopic manner, thereby facilitating the search for and optimization of novel allosteric NTSR1 ligands. As a consequence of cooperativity between the ligands binding to the allosteric and orthosteric pocket, compound 14 can also be used to investigate orthosteric NTSR1 agonists and antagonists. Moreover, employing 14 as a probe in a drug library screening, we identified novel chemotypes as binders for the intracellular allosteric SBI-553 binding pocket of NTSR1 with single-digit micromolar affinity. These hits may serve as interesting starting points for the development of novel intracellular allosteric ligands for NTSR1 as a highly interesting yet unexploited drug target in the fields of pain and addiction disorder therapy.
Collapse
Affiliation(s)
- Hannah Vogt
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Patrick Shinkwin
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Nico Staffen
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- FAU
NeW − Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Dorothee Weikert
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- FAU
NeW − Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Spatz P, Chen X, Reichau K, Huber ME, Mühlig S, Matsusaka Y, Schiedel M, Higuchi T, Decker M. Development and Initial Characterization of the First 18F-CXCR2-Targeting Radiotracer for PET Imaging of Neutrophils. J Med Chem 2024; 67:6327-6343. [PMID: 38570909 DOI: 10.1021/acs.jmedchem.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Kora Reichau
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
- Pharmaceutical and Medicinal Chemistry, Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
11
|
Camacho-Hernandez G, Gopinath A, Okorom AV, Khoshbouei H, Newman AH. Development of a Fluorescently Labeled Ligand for Rapid Detection of DAT in Human and Mouse Peripheral Blood Monocytes. JACS AU 2024; 4:657-665. [PMID: 38425927 PMCID: PMC10900201 DOI: 10.1021/jacsau.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
The dopamine transporter (DAT) is one of the key regulators of dopamine (DA) signaling in the central nervous system (CNS) and in the periphery. Recent reports in a model of Parkinson's disease (PD) have shown that dopamine neuronal loss in the CNS impacts the expression of DAT in peripheral immune cells. The mechanism underlying this connection is still unclear but could be illuminated with sensitive and high-throughput detection of DAT-expressing immune cells in the circulation. Herein, we have developed fluorescently labeled ligands (FLL) that bind to surface-expressing DAT with high affinity and selectivity. The diSulfoCy5-FLL (GC04-38) was utilized to label DAT in human and mouse peripheral blood mononuclear cells (PBMCs) that were analyzed via flow cytometry. Selective labeling was validated using DAT KO mouse PBMCs. Our studies provide an efficient and highly sensitive method using this novel DAT-selective FLL to advance our fundamental understanding of DAT expression and activity in PBMCs in health and disease and as a potential peripheral biomarker.
Collapse
Affiliation(s)
- Gisela
Andrea Camacho-Hernandez
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Adithya Gopinath
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amarachi V. Okorom
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Habibeh Khoshbouei
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
12
|
Bresinsky M, Shahraki A, Kolb P, Pockes S, Schihada H. Development of Fluorescent AF64394 Analogues Enables Real-Time Binding Studies for the Orphan Class A GPCR GPR3. J Med Chem 2023; 66:15025-15041. [PMID: 37907069 PMCID: PMC10641823 DOI: 10.1021/acs.jmedchem.3c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The orphan G protein-coupled receptor (oGPCR) GPR3 represents a potential drug target for the treatment of Alzheimer's disease and metabolic disorders. However, the limited toolbox of pharmacological assays hampers the development of advanced ligands. Here, we developed a signaling pathway-independent readout of compound-GPR3 interaction. Starting from computational binding pose predictions of the most potent GPR3 ligand, we designed a series of fluorescent AF64394 analogues and assessed their suitability for BRET-based binding studies. The most potent ligand, 45 (UR-MB-355), bound to GPR3 and closely related receptors, GPR6 and GPR12, with similar submicromolar affinities. Furthermore, we found that 45 engages GPR3 in a distinct mode compared to AF64394, and coincubation studies with the GPR3 agonist diphenyleneiodonium chloride revealed allosteric modulation of 45 binding. These insights provide new cues for the pharmacological manipulation of GPR3 activity. This novel binding assay will foster the development of future drugs acting through these pharmacologically attractive oGPCRs.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aida Shahraki
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Peter Kolb
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Hannes Schihada
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
13
|
Camacho-Hernandez GA, Jahan K, Newman AH. Illuminating the monoamine transporters: Fluorescently labelled ligands to study dopamine, serotonin and norepinephrine transporters. Basic Clin Pharmacol Toxicol 2023; 133:473-484. [PMID: 36527444 PMCID: PMC11309735 DOI: 10.1111/bcpt.13827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Fluorescence microscopy has revolutionized the visualization of physiological processes in live-cell systems. With the recent innovations in super resolution microscopy, these events can be examined with high precision and accuracy. The development of fluorescently labelled small molecules has provided a significant advance in understanding the physiological relevance of targeted proteins that can now be visualized at the cellular level. One set of physiologically important target proteins are the monoamine transporters (MATs) that play an instrumental role in maintaining monoamine signalling homeostasis. Understanding the mechanisms underlying their regulation and dysregulation is fundamental to treating several neuropsychiatric conditions such as attention deficit hyperactivity disorder (ADHD), anxiety, depression and substance use disorders. Herein, we describe the rationale behind the small molecule design of fluorescently labelled ligands (FLL) either as MAT substrates or inhibitors as well as their applications to advance our understanding of this class of transporters in health and disease.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| | - Khorshada Jahan
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes on Drug Abuse - Intramural Research Program, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Gehringer M, Pape F, Méndez M, Barbie P, Unzue Lopez A, Lefranc J, Klingler FM, Hessler G, Langer T, Diamanti E, Schiedel M. Back in Person: Frontiers in Medicinal Chemistry 2023. ChemMedChem 2023; 18:e202300344. [PMID: 37485831 DOI: 10.1002/cmdc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Gehringer
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Felix Pape
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals, Laboratory IV, Bldg. S106, 231, 13342, Berlin, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G877, 65926, Frankfurt am Main, Germany
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
15
|
Casella B, Farmer JP, Nesheva DN, Williams HEL, Charlton SJ, Holliday ND, Laughton CA, Mistry SN. Design, Synthesis, and Application of Fluorescent Ligands Targeting the Intracellular Allosteric Binding Site of the CXC Chemokine Receptor 2. J Med Chem 2023; 66:12911-12930. [PMID: 37523859 PMCID: PMC10544029 DOI: 10.1021/acs.jmedchem.3c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/02/2023]
Abstract
The inhibition of CXC chemokine receptor 2 (CXCR2), a key inflammatory mediator, is a potential strategy in the treatment of several pulmonary diseases and cancers. The complexity of endogenous chemokine interaction with the orthosteric binding site has led to the development of CXCR2 negative allosteric modulators (NAMs) targeting an intracellular pocket near the G protein binding site. Our understanding of NAM binding and mode of action has been limited by the availability of suitable tracer ligands for competition studies, allowing direct ligand binding measurements. Here, we report the rational design, synthesis, and pharmacological evaluation of a series of fluorescent NAMs, based on navarixin (2), which display high affinity and preferential binding for CXCR2 over CXCR1. We demonstrate their application in fluorescence imaging and NanoBRET binding assays, in whole cells or membranes, capable of kinetic and equilibrium analysis of NAM binding, providing a platform to screen for alternative chemophores targeting these receptors.
Collapse
Affiliation(s)
- Bianca
Maria Casella
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - James P. Farmer
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Desislava N. Nesheva
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Huw E. L. Williams
- School
of Chemistry, University of Nottingham Biodiscovery
Institute, Nottingham NG7 2RD, UK
| | - Steven J. Charlton
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- OMass
Therapeutics Ltd., Oxford OX4 2GX, UK
| | - Nicholas D. Holliday
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Excellerate
Bioscience Ltd., Biocity, University of
Nottingham, Nottingham NG1 1GF, UK
| | - Charles A. Laughton
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - Shailesh N. Mistry
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| |
Collapse
|
16
|
Huber ME, Wurnig S, Toy L, Weiler C, Merten N, Kostenis E, Hansen FK, Schiedel M. Fluorescent Ligands Enable Target Engagement Studies for the Intracellular Allosteric Binding Site of the Chemokine Receptor CXCR2. J Med Chem 2023. [PMID: 37463496 PMCID: PMC10388362 DOI: 10.1021/acs.jmedchem.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (1), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 (9a) as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and high-throughput manner. Further, we show that 9a can be used as a tool to visualize intracellular target engagement for CXCR2 via fluorescence microscopy. Thus, our small-molecule-based fluorescent CXCR2 ligand 9a represents a promising tool for future studies of CXCR2 pharmacology.
Collapse
Affiliation(s)
- Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Silas Wurnig
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Corinna Weiler
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Finn K Hansen
- Department of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
17
|
Li W, Ma Z, Du L, Li M. Development and Characterization of a Highly Selective Turn-On Fluorescent Ligand for β 3-Adrenergic Receptor. Anal Chem 2023; 95:2848-2856. [PMID: 36700797 DOI: 10.1021/acs.analchem.2c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For the precise visualization of GPCR, subtype selectivity of turn-on fluorescent ligands is of major relevance. Although there are many thriving β-adrenergic receptors (β-ARs) probes, none of them are selective to the β3-subtype, which severely limits the development of β3-AR investigations. Using a polyethylene glycol (PEG) chain to conjugate the Py-5 fluorophore with mirabegron, we present here a highly selective fluorescent ligand, H2, for β3-AR. It was established by the radioligand and NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding experiments that molecule H2 has a substantially higher affinity for β3-AR than the other two subtypes (1/3, 45-fold; 2/3, 16-fold). More crucially, when molecule H2 was incubated with β3-AR, the turn-on fluorescent signals could be quickly released. The subsequent investigations, which included cell imaging, tissue imaging, and flow-cytometry analysis, proved that molecule H2 may make it possible to quickly and accurately fluorescently identify β3-AR at different levels. We offer a prospective fluorescent turn-on ligand with exceptional selectivity for β3-AR as a result of our combined efforts.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
18
|
Huber ME, Toy L, Schmidt MF, Weikert D, Schiedel M. Small Molecule Tools to Study Cellular Target Engagement for the Intracellular Allosteric Binding Site of GPCRs. Chemistry 2023; 29:e202202565. [PMID: 36193681 PMCID: PMC10100284 DOI: 10.1002/chem.202202565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/11/2022]
Abstract
A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS-targeted ligands as potential therapeutic agents.
Collapse
Affiliation(s)
- Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Lara Toy
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| |
Collapse
|