1
|
Liang Y, Adamson C, Feng S, Qiao Y. Exploring the Impact of Amidation Status in Meso-Diaminopimelic-Acid-Containing Disaccharide Peptidoglycan Fragments on Host Innate Immune Activation. ACS Chem Biol 2025; 20:69-76. [PMID: 39749870 DOI: 10.1021/acschembio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts. The focus of this study is on the amidation status of γ-d-glutamic acid and meso-diaminopimelic acid (mDAP) at the second and third positions of stem peptides in peptidoglycan, which represent key structural features that vary across different bacterial species. With four synthetic mDAP-containing disaccharide PGNs of different amidation states, we systematically investigated their structure-activity relationship in stimulating host innate immune responses in vitro. Our findings revealed that the amidation of disaccharide PGNs has distinct effects on NOD1 and NOD2 induction, along with their differential immunostimulatory activities in macrophage cells. Additionally, we found that, like the canonical NOD2 ligand, natural PGNs confer immune tolerance to LPS, and amidation states do not affect this outcome. Overall, our work highlights the potential immunological implications of these differentially amidated mDAP-type disaccharide PGNs in host-microbe crosstalk.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Shiliu Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
2
|
Babulic JL, De León González FV, Capicciotti CJ. Recent advances in photoaffinity labeling strategies to capture Glycan-Protein interactions. Curr Opin Chem Biol 2024; 80:102456. [PMID: 38705088 DOI: 10.1016/j.cbpa.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glycans decorate all cells and are critical mediators of cellular processes through recognition by glycan-binding proteins (GBPs). While targeting glycan-protein interactions has great therapeutic potential, these interactions are challenging to study as they are generally transient and exhibit low binding affinities. Glycan-based photo-crosslinkable probes have enabled covalent capture and identification of unknown GBP receptors and glycoconjugate ligands. Here, we review recent progress in photo-crosslinking approaches targeting glycan-mediated interactions. We discuss two prominent emerging strategies: 1) development of photo-crosslinkable oligosaccharide ligands to identify GBP receptors; and 2) cell-surface glyco-engineering to identify glycoconjugate ligands of GBPs. Overall, photoaffinity labeling affords valuable insights into complex glycan-protein networks and is poised to help elucidate the glycan-protein interactome, providing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | | | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada; Department of Chemistry, Queen's University, Kingston, K7L 2S8, Canada; Department of Surgery, Queen's University, Kingston, K7L 2V7, Canada.
| |
Collapse
|
3
|
Walrant A, Sachon E. Photoaffinity labeling coupled to MS to identify peptide biological partners: Secondary reactions, for better or for worse? MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576378 DOI: 10.1002/mas.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Affinity photolabeling is a smart method to study noncovalent and transient interactions and provide a submolecular picture of the contacts between interacting partners. In this review, we will focus on the identification of peptide partners using photoaffinity labeling coupled to mass spectrometry in different contexts such as in vitro with a purified potential partner, in model systems such as model membranes, and with live cells using both targeted and nontargeted proteomics studies. Different biological partners will be described, among which glycoconjugates, oligonucleotides, peptides, proteins, and lipids, with the photoreactive label inserted either on the peptide of interest or on the potential partner. Particular attention will be paid to the observation and characterization of specific rearrangements following the photolabeling reaction, which can help characterize photoadducts and provide a better understanding of the interacting systems and environment.
Collapse
Affiliation(s)
- Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, Fédération de Chimie moléculaire de Paris centre, Paris, France
| |
Collapse
|
4
|
Ng AWR, Li L, Ng EWL, Li C, Qiao Y. Molecular Docking Reveals Critical Residues in Candida albicans Cyr1 for Peptidoglycan Recognition and Hyphal Growth. ACS Infect Dis 2023; 9:1362-1371. [PMID: 37318518 DOI: 10.1021/acsinfecdis.3c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The key virulent characteristic of Candida albicans, the major fungal pathogen in humans, lies in its ability to switch between the benign yeast state and the invasive hyphal form upon exposure to specific stimuli. Among the numerous hyphal-inducing signals, bacterial peptidoglycan fragments (PGNs) represent the most potent inducers of C. albicans hyphal growth. The sole adenylyl cyclase Cyr1 in C. albicans is a known sensor for PGNs and activates downstream signaling of hyphal growth, yet the molecular details of PGN-Cyr1 interactions have remained unclear. In this study, we performed in silico docking of a PGN motif to the modeled structure of the Cyr1 leucine-rich repeat (LRR) domain and uncovered four putative PGN-interacting residues in Cyr1_LRR. The critical roles of these residues in PGN binding and supporting C. albicans hyphal growth were demonstrated by in-gel fluorescence binding assay and hyphal induction assay, respectively. Remarkably, the C. albicans mutant harboring the cyr1 variant allele that is defective for PGN recognition exhibits significantly reduced cytotoxicity in macrophage infection assay. Overall, our work offered important insights into the molecular recognition of PGNs by C. albicans Cyr1 sensor protein, establishing that disruption of PGN recognition by Cyr1 results in defective hyphal growth and reduced virulence of C. albicans. Our findings provide an exciting starting point for the future development of Cyr1 antagonists as novel anti-virulence therapeutics to combat C. albicans invasive growth and infection.
Collapse
Affiliation(s)
- Allan Wee Ren Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore S637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore S637371, Singapore
| | - Evan Wei Long Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore S637371, Singapore
| | - Chenyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore S637371, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore S637371, Singapore
| |
Collapse
|
5
|
Chow EWL, Mei Pang L, Wang Y. Impact of the host microbiota on fungal infections: new possibilities for intervention? Adv Drug Deliv Rev 2023; 198:114896. [PMID: 37211280 DOI: 10.1016/j.addr.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Many human fungal pathogens are opportunistic. They are primarily benign residents of the human body and only become infectious when the host's immunity and microbiome are compromised. Bacteria dominate the human microbiome, playing an essential role in keeping fungi harmless and acting as the first line of defense against fungal infection. The Human Microbiome Project, launched by NIH in 2007, has stimulated extensive investigation and significantly advanced our understanding of the molecular mechanisms governing the interaction between bacteria and fungi, providing valuable insights for developing future antifungal strategies by exploiting the interaction. This review summarizes recent progress in this field and discusses new possibilities and challenges. We must seize the opportunities presented by researching bacterial-fungal interplay in the human microbiome to address the global spread of drug-resistant fungal pathogens and the drying pipelines of effective antifungal drugs.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li Mei Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore.
| |
Collapse
|
6
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Zeng G, Neo SP, Pang LM, Gao J, Chong SC, Gunaratne J, Wang Y. Comprehensive Interactome Analysis for the Sole Adenylyl Cyclase Cyr1 of Candida albicans. Microbiol Spectr 2022; 10:e0393422. [PMID: 36314909 PMCID: PMC9769623 DOI: 10.1128/spectrum.03934-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cyr1, the sole adenylyl cyclase of the fungal pathogen Candida albicans, is a central component of the cAMP/protein kinase A signaling pathway that controls the yeast-to-hypha transition. Cyr1 is a multivalent sensor and integrator of various external and internal signals. To better understand how these signals are relayed to Cyr1 to regulate its activity, we sought to establish the interactome of Cyr1 by using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to identify the proteins that coimmunoprecipitated with Cyr1. The method identified 36 proteins as candidates for authentic Cyr1-interacting partners, together with two known Cyr1-binding proteins, Cap1 and Act1. Fourteen identified proteins belonged to three functional groups, including actin regulation, cell wall components, and mitochondrial activities, that are known to play important roles in cell morphogenesis. To validate the proteomics data, we used biochemical and genetic methods to characterize two cell wall-related proteins, Mp65 and Sln1. First, coimmunoprecipitation confirmed their physical association with Cyr1. Second, deleting either MP65 or SLN1 resulted in severe defects in filamentation on serum plates. This study establishes the first Cyr1 interactome and uncovers a potential role for cell wall proteins in directly regulating Cyr1 activity to determine growth forms in C. albicans. IMPORTANCE A critical virulence trait of the human fungal pathogen Candida albicans is its ability to undergo the yeast-to-hypha transition in response to diverse environmental and cellular stimuli. Previous studies suggested that the sole adenylyl cyclase of C. albicans, Cyr1, is a multivalent signal sensor and integrator synthesizing cAMP to activate the downstream hypha-promoting events through the cAMP/protein kinase A pathway. To fully understand how Cyr1 senses and processes multiple stimuli to generate appropriate signal outputs, it was necessary to identify and characterize Cyr1-interacting partners. This study employed SILAC-based quantitative proteomic approaches and identified 36 Cyr1-associated proteins, many having functions associated with hyphal morphogenesis. Coimmunoprecipitation verified two cell surface proteins, Mp65 and Sln1. Furthermore, genetic and phenotypic analyses demonstrated the cAMP-dependent roles of these two proteins in determining hyphal growth. Our study establishes the first Cyr1 interactome and uncovers new Cyr1 regulators that mediate cell surface signals to influence the growth mode of C. albicans.
Collapse
Affiliation(s)
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yue Wang
- Infectious Diseases Labs, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|