1
|
Mayoka G, Krug D, Loretz B, Bozhüyük K, Empting M, Hirsch AKH, Müller R. The HIPS 2024 symposium: highlighting advances in pharmaceutical sciences in infection research. Trends Microbiol 2024; 32:927-930. [PMID: 39181789 DOI: 10.1016/j.tim.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Godfrey Mayoka
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| | - Kenan Bozhüyük
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany.
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
2
|
Biermann F, Tan B, Breitenbach M, Kakumu Y, Nanudorn P, Dimitrova Y, Walker AS, Ueoka R, Helfrich EJN. Exploration, expansion and definition of the atropopeptide family of ribosomally synthesized and posttranslationally modified peptides. Chem Sci 2024; 15:d4sc03469d. [PMID: 39371454 PMCID: PMC11450843 DOI: 10.1039/d4sc03469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) constitute a diverse class of natural products. Atropopeptides are a recent addition to the class. Here we developed AtropoFinder, a genome mining algorithm to chart the biosynthetic landscape of the atropopeptides. AtropoFinder identified more than 650 atropopeptide biosynthetic gene clusters (BGCs). We pinpointed crucial motifs and residues in leader and core peptide sequences, prompting a refined definition of the atropopeptide RiPP family. Our study revealed that a substantial subset of atropopeptide BGCs harbors multiple tailoring genes, thus suggesting a broader structural diversity than previously anticipated. To verify AtropoFinder, we heterologously expressed four atropopeptide BGCs, which resulted in the identification of novel atropopeptides with varying peptide lengths, number and types of modifications. Atropopeptides serve as a proof-of-principle for the versatile genome mining approach developed in this study that can be repurposed for the identification of RiPP and other BGCs that currently evade detection.
Collapse
Affiliation(s)
- Friederike Biermann
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Bin Tan
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Milena Breitenbach
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Pakjira Nanudorn
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Yoana Dimitrova
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University Stevenson Center 7330 Nashville TN 37240 USA
- Department of Biological Sciences, Vanderbilt University VU Station B, Box 35-1634 Nashville TN 37235 USA
| | - Reiko Ueoka
- School of Marine Biosciences, Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt Max-von-Laue Strasse 9 60438 Frankfurt am Main Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG) Senckenberganlage 25 60325 Frankfurt am Main Germany
- Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25 60325 Frankfurt am Main Germany
| |
Collapse
|
3
|
Han EJ, Jeong M, Lee SR, Sorensen EJ, Seyedsayamdost MR. Hirocidins, Cytotoxic Metabolites from Streptomyces hiroshimensis, Induce Mitochondrion-Mediated Apoptosis. Angew Chem Int Ed Engl 2024; 63:e202405367. [PMID: 38898540 DOI: 10.1002/anie.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in whole genome sequencing have revealed an immense microbial potential for the production of therapeutic small molecules, even from well-known producers. To access this potential, we subjected prominent antimicrobial producers to alternative antiproliferative assays using persistent cancer cell lines. Described herein is our discovery of hirocidins, novel secondary metabolites from Streptomyces hiroshimensis with antiproliferative activities against colon and persistent breast cancer cells. Hirocidin A is an unusual nine-membered carbocyclic maleimide and hirocidins B and C are relatives with an unprecedented, bridged azamacrocyclic backbone. Mode of action studies show that hirocidins trigger mitochondrion-dependent apoptosis by inducing expression of the key apoptotic effector caspase-9. The discovery of new cytotoxins contributes to scaffold diversification in anticancer drug discovery and the reported modes of action and concise total synthetic route for variant A set the stage for unraveling specific targets and biochemical interactions of the hirocidins.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Myungeun Jeong
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Schniete JK, Fernández-Martínez LT. Natural product discovery in soil actinomycetes: unlocking their potential within an ecological context. Curr Opin Microbiol 2024; 79:102487. [PMID: 38733791 DOI: 10.1016/j.mib.2024.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Natural products (NPs) produced by bacteria, particularly soil actinomycetes, often possess diverse bioactivities and play a crucial role in human health, agriculture, and biotechnology. Soil actinomycete genomes contain a vast number of predicted biosynthetic gene clusters (BGCs) yet to be exploited. Understanding the factors governing NP production in an ecological context and activating cryptic and silent BGCs in soil actinomycetes will provide researchers with a wealth of molecules with potential novel applications. Here, we highlight recent advances in NP discovery strategies employing ecology-inspired approaches and discuss the importance of understanding the environmental signals responsible for activation of NP production, particularly in a soil microbial community context, as well as the challenges that remain.
Collapse
Affiliation(s)
- Jana K Schniete
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany.
| | - Lorena T Fernández-Martínez
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
5
|
Lee DY, Kim J, Lee GS, Park S, Song J, Lee BS, Lee SR, Kim KH, Kim CS. Characterization of Chemical Interactions between Clinical Drugs and the Oral Bacterium, Corynebacterium matruchotii, via Bioactivity-HiTES. ACS Chem Biol 2024; 19:973-980. [PMID: 38514380 DOI: 10.1021/acschembio.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 μM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 μM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 μM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.
Collapse
Affiliation(s)
- Da Yeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sehwan Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongwon Song
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Cook GD, Stasulli NM. Employing synthetic biology to expand antibiotic discovery. SLAS Technol 2024; 29:100120. [PMID: 38340893 DOI: 10.1016/j.slast.2024.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.
Collapse
Affiliation(s)
- Greta D Cook
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA
| | - Nikolas M Stasulli
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA.
| |
Collapse
|
7
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
8
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
9
|
Nam H, An JS, Lee J, Yun Y, Lee H, Park H, Jung Y, Oh KB, Oh DC, Kim S. Exploring the Diverse Landscape of Biaryl-Containing Peptides Generated by Cytochrome P450 Macrocyclases. J Am Chem Soc 2023; 145:22047-22057. [PMID: 37756205 DOI: 10.1021/jacs.3c07140] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze diverse oxidative cross-coupling reactions between aromatic substrates in the natural product biosynthesis. Specifically, P450s install distinct biaryl macrocyclic linkages in three families of ribosomally synthesized and post-translationally modified peptides (RiPPs). However, the chemical diversity of biaryl-containing macrocyclic RiPPs remains largely unexplored. Here, we demonstrate that P450s have the capability to generate diverse biaryl linkages on RiPPs, collectively named "cyptides". Homology-based genome mining for P450 macrocyclases revealed 19 novel groups of homologous biosynthetic gene clusters (BGCs) with distinct aromatic residue patterns in the precursor peptides. Using the P450-modified precursor peptides heterologously coexpressed with corresponding P450s in Escherichia coli, we determined the NMR structures of three novel biaryl-containing peptides─the enzymatic products, roseovertin (1), rubrin (2), and lapparbin (3)─and confirmed the formation of three unprecedented or rare biaryl linkages: Trp C-7'-to-His N-τ in 1, Trp C-7'-to-Tyr C-6 in 2, and Tyr C-6-to-Trp N-1' in 3. Biochemical characterization indicated that certain P450s in these pathways have a relaxed substrate specificity. Overall, our studies suggest that P450 macrocyclases have evolved to create diverse biaryl linkages in RiPPs, promoting the exploration of a broader chemical space for biaryl-containing peptides encoded in bacterial genomes.
Collapse
|
10
|
Han EJ, Lee SR, Townsend CA, Seyedsayamdost MR. Targeted Discovery of Cryptic Enediyne Natural Products via FRET-Coupled High-Throughput Elicitor Screening. ACS Chem Biol 2023; 18:1854-1862. [PMID: 37463302 PMCID: PMC11062413 DOI: 10.1021/acschembio.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Enediyne antibiotics are a striking family of DNA-cleaving natural products with high degrees of cytotoxicity and structural complexity. Microbial genome sequences, which have recently accumulated, point to an untapped trove of "cryptic" enediynes. Most of the cognate biosynthetic gene clusters (BGCs) are sparingly expressed under standard growth conditions, making it difficult to characterize their products. Herein, we report a fluorescence-based DNA cleavage assay coupled with high-throughput elicitor screening for the rapid, targeted discovery of cryptic enediyne metabolites. We applied the approach to Streptomyces clavuligerus, which harbors two such BGCs with unknown products, identified steroids as effective elicitors, and characterized 10 cryptic enediyne-derived natural products, termed clavulynes A-J with unusual carbonate and terminal olefin functionalities, with one of these congeners matching the recently reported jejucarboside. Our results contribute to the growing repertoire of enediynes and provide a blueprint for identifying additional ones in the future.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Graham DB, Xavier RJ. Conditioning of the immune system by the microbiome. Trends Immunol 2023; 44:499-511. [PMID: 37236891 DOI: 10.1016/j.it.2023.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The human intestinal microbiome has coevolved with its host to establish a stable homeostatic relationship with hallmark features of mutualistic symbioses, yet the mechanistic underpinnings of host-microbiome interactions are incompletely understood. Thus, it is an opportune time to conceive a common framework for microbiome-mediated regulation of immune function. We propose the term conditioned immunity to describe the multifaceted mechanisms by which the microbiome modulates immunity. In this regard, microbial colonization is a conditioning exposure that has durable effects on immune function through the action of secondary metabolites, foreign molecular patterns, and antigens. Here, we discuss how spatial niches impact host exposure to microbial products at the level of dose and timing, which elicit diverse conditioned responses.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
An JS, Lee H, Kim H, Woo S, Nam H, Lee J, Lee JY, Nam SJ, Lee SK, Oh KB, Kim S, Oh DC. Discovery and Biosynthesis of Cihunamides, Macrocyclic Antibacterial RiPPs with a Unique C-N Linkage Formed by CYP450 Catalysis. Angew Chem Int Ed Engl 2023; 62:e202300998. [PMID: 37114290 DOI: 10.1002/anie.202300998] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Cihunamides A-D (1-4), novel antibacterial RiPPs, were isolated from volcanic-island-derived Streptomyces sp. The structures of 1-4 were elucidated by 1 H, 13 C, and 15 N NMR, MS, and chemical derivatization; they contain a tetrapeptide core composed of WNIW, cyclized by a unique C-N linkage between two Trp units. Genome mining of the producer strain revealed two biosynthetic genes encoding a cytochrome P450 enzyme and a precursor peptide. Heterologous co-expression of the core genes demonstrated the biosynthesis of cihunamides through P450-mediated oxidative Trp-Trp cross-linking. Further bioinformatic analysis uncovered 252 homologous gene clusters, including that of tryptorubins, which possess a distinct Trp-Trp linkage. Cihunamides do not display the non-canonical atropisomerism shown in tryptorubins, which are the founding members of the "atropitide" family. Therefore, we propose to use a new RiPP family name, "bitryptides", for cihunamides, tryptorubins, and their congeners, wherein the Trp-Trp linkages define the structural class rather than non-canonical atropisomerism.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunbin Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyungyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seungyeon Woo
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Hyunsung Nam
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Jayho Lee
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 (Republic of, Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Ki-Bong Oh
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Seokhee Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 (Republic of, Korea
| |
Collapse
|
13
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Modern Trends in Natural Antibiotic Discovery. Life (Basel) 2023; 13:1073. [PMID: 37240718 PMCID: PMC10221674 DOI: 10.3390/life13051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (V.A.A.)
| |
Collapse
|
14
|
Alwali AY, Parkinson EI. Small molecule inducers of actinobacteria natural product biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad019. [PMID: 37587009 PMCID: PMC10549211 DOI: 10.1093/jimb/kuad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. ONE-SENTENCE SUMMARY This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|