1
|
Ang CG, Hyatt NL, Le Minh G, Gupta M, Kadam M, Hogg PJ, Smith AB, Chaiken IM. Conformational activation and disulfide exchange in HIV-1 Env induce cell-free lytic/fusogenic transformation and enhance infection. J Virol 2025:e0147124. [PMID: 39912667 DOI: 10.1128/jvi.01471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Disulfide exchange is underexplored as a mechanism influencing HIV-1 entry. Prior studies demonstrated that redox enzyme inhibition can prevent HIV-1 infection but with limited mechanistic explanation. We hypothesize that ligand-driven rearrangement ("conformational activation") enables enzyme-mediated disulfide exchange in Env residues ("disulfide trigger") that promotes fusion transformations, enhancing virus entry. We tested soluble CD4 and CD4-binding site entry inhibitors as conformational activators and the ubiquitous redox enzyme thioredoxin-1 (Trx1) as disulfide trigger. We found that combination treatment caused fusion-like Env transformation and pseudovirus lysis, independent of cells. Notably, only compounds associated with gp120 shedding caused lysis when paired with Trx1. In each case, lysis was prevented by adding the fusion inhibitor T20, demonstrating that six-helix bundle formation is required as in virus-cell fusion. In contrast to conformationally activating ligands, neither the ground state stabilizer BMS-806 with Trx1 nor Trx1 alone caused lysis. Order of addition experiments reinforced conformational activation/disulfide trigger as a sequential process, with virus/activator preincubation transiently enhancing lysis and virus/Trx1 preincubation reducing lysis. Lastly, addition of exogenous Trx1 to typical pseudovirus infections exhibited dose-dependent enhancement of infection. Altogether, these data support conformational activation and disulfide triggering as a mechanism that can induce and enhance the fusogenic transformation of Env.IMPORTANCEHIV remains a global epidemic despite effective anti-retroviral therapies (ART) that suppress viral replication. Damage from early-stage infection and immune cell depletion lingers, as ART enables only partial immune system recovery, making prevention of initial virus entry preferable. In this study, we investigate disulfide exchange and its facilitating conformational rearrangements as underexplored, but critical, events in the HIV entry process. The HIV envelope (Env) protein effects cell entry by conformational rearrangement and pore formation upon interaction with immune cell surface proteins, but this transformation can be induced by Env's conformational activation and disulfide exchange by redox enzymes, which then integrates into established processes of HIV entry. The significance of this research is in identifying Env's conformational activation as a mechanistic requirement for initiating fusion by triggering disulfide exchange. This will aid the development of novel preventative strategies against HIV entry, particularly in the context of HIV-enhanced inflammation and comorbidities with redox mechanisms.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Nadia L Hyatt
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Giang Le Minh
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Monisha Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Manali Kadam
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Philip J Hogg
- School of Life Sciences, University of Technology Sydney and Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
3
|
Gupta M, Canziani G, Ang C, Mohammadi M, Abrams CF, Yang D, Smith AB, Chaiken I. Pharmacophore Variants of the Macrocyclic Peptide Triazole Inactivator of HIV-1 Env. RESEARCH SQUARE 2023:rs.3.rs-2814722. [PMID: 37131733 PMCID: PMC10153383 DOI: 10.21203/rs.3.rs-2814722/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
Previously we established a family of macrocyclic peptide triazoles (cPTs) that inactivate the Env protein complex of HIV-1, and identified the pharmacophore that engages Env's receptor binding pocket. Here, we examined the hypothesis that the side chains of both components of the triazole Pro - Trp segment of cPT pharmacophore work in tandem to make intimate contacts with two proximal subsites of the overall CD4 binding site of gp120 to stabilize binding and function. Variations of the triazole Pro R group, which previously had been significantly optimized, led to identification of a variant MG-II-20 that contains a pyrazole substitution. MG-II-20 has improved functional properties over previously examined variants, with Kd for gp120 in the nM range. In contrast, new variants of the Trp indole side chain, with either methyl- or bromo- components appended, had disruptive effects on gp120 binding, reflecting the sensitivity of function to changes in this component of the encounter complex. Plausible in silico models of cPT:gp120 complex structures were obtained that are consistent with the overall hypothesisof occupancy by the triazole Pro and Trp side chains, respectively, into the β20/21 and Phe43 sub-cavities. The overall results strengthen the definition of the cPT-Env inactivator binding site and provide a new lead composition (MG-II-20) as well as structure-function findings to guide future HIV-1 Env inactivator design.
Collapse
Affiliation(s)
- Monisha Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Charles Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Mohammadjavad Mohammadi
- Department of Chemical & Biological Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Cameron F Abrams
- Department of Chemical & Biological Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
4
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Zhang S, Holmes AP, Dick A, Rashad AA, Enríquez Rodríguez L, Canziani GA, Root MJ, Chaiken IM. Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators. Retrovirology 2021; 18:31. [PMID: 34627310 PMCID: PMC8501640 DOI: 10.1186/s12977-021-00575-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. RESULTS HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. CONCLUSIONS Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P Holmes
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Gabriela A Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael J Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, OH, Columbus, USA.
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry. Microorganisms 2021; 9:1286. [PMID: 34204725 PMCID: PMC8231586 DOI: 10.3390/microorganisms9061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.
Collapse
Affiliation(s)
- Charles Gotuaco Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Erik Carter
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Ann Haftl
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA 19102, USA
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| | - Michele Kutzler
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, College of Engineering, Drexel University, Philadelphia, PA 19102, USA;
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| |
Collapse
|
7
|
Gaffney A, Nangarlia A, Ang CG, Gossert S, Rashad Ahmed AA, Hossain MA, Abrams CF, Smith AB, Chaiken I. HIV-1 Env-Dependent Cell Killing by Bifunctional Small-Molecule/Peptide Conjugates. ACS Chem Biol 2021; 16:440-442. [PMID: 33535751 DOI: 10.1021/acschembio.1c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Steven Gossert
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Adel Ahmed Rashad Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
8
|
Gaffney A, Nangarlia A, Ang CG, Gossert S, Rashad Ahmed AA, Hossain MA, Abrams CF, Smith AB, Chaiken I. HIV-1 Env-Dependent Cell Killing by Bifunctional Small-Molecule/Peptide Conjugates. ACS Chem Biol 2021; 16:193-204. [PMID: 33410670 DOI: 10.1021/acschembio.0c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
A strategy has been established for the synthesis of a family of bifunctional HIV-1 inhibitor covalent conjugates with the potential to bind simultaneously to both the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein trimeric complex (Env). One component of the conjugates is derived from BNM-III-170, a small-molecule CD4 mimic that binds to gp120. The second component, comprised of the peptide DKWASLWNW ("Trp3"), was derived from the N-terminus of the HIV-1 gp41 Membrane Proximal External Region (MPER) and found previously to bind to the gp41 subunit of Env. The resulting bifunctional conjugates were shown to inhibit virus cell infection with low micromolar potency and to induce lysis of the HIV-1 virion. Crucially, virolysis was found to be dependent on the covalent linkage of the BNM-III-170 and Trp3 domains, as coadministration of a mixture of the un-cross-linked components proved to be nonlytic. However, a significant magnitude of lytic activity was observed in Env-negative and other control pseudoviruses, suggesting parallel mechanisms of action of the conjugates involving Env interaction and direct membrane disruption. Computational modeling suggested strong membrane-binding activity of BNM-III-170, which may underly the nonspecific virolytic effects of the conjugates. To investigate the scope of the membrane effect, cell-based cytotoxicity and membrane permeability assays were performed employing flow cytometry. Here, we observed a dose-dependent and specific cytotoxic effect on HIV-1 Env-expressing cells by the small-molecule bifunctional inhibitor. Most importantly, Env-negative cells were not susceptible to the cytotoxic effect upon exposure to this construct at concentrations where cell-killing effects were observed for Env-positive cells. Computational structural modeling supports a mechanism in which the bifunctional inhibitors bind to the gp120 and gp41 subunits in tandem in open-state Env trimers and induce relative motion of the gp120 subunits consistent with models of Env inactivation. This observation supports the idea that the cell-killing effect of the small-molecule bifunctional inhibitor is due to specific Env conformational triggering. This work lays important groundwork to advance a small-molecule bifunctional inhibitor approach for eliminating Env-expressing infected cells and the eradication of HIV-1.
Collapse
Affiliation(s)
- Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Steven Gossert
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Adel Ahmed Rashad Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
9
|
Naouri A, Djemoui A, Ouahrani MR, Lahrech MB, Lemouari N, Rocha DH, Albuquerque H, Mendes RF, Almeida Paz FA, Helguero LA, Bachari K, Talhi O, Silva AM. Multicomponent and 1,3-dipolar cycloaddition synthesis of triazole- and isoxazole-acridinedione/xanthenedione heterocyclic hybrids: Cytotoxic effects on human cancer cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
10
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|
11
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
12
|
|