1
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
2
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Grady CJ, Castellanos Franco EA, Schossau J, Ashbaugh RC, Pelled G, Gilad AA. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation. Front Bioeng Biotechnol 2024; 12:1355915. [PMID: 38605993 PMCID: PMC11007078 DOI: 10.3389/fbioe.2024.1355915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.
Collapse
Affiliation(s)
- Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Jory Schossau
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ryan C. Ashbaugh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Oliayi M, Emamzadeh R, Rastegar M, Nazari M. Tri-part NanoLuc as a new split technology with potential applications in chemical biology: a mini-review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3924-3931. [PMID: 37545367 DOI: 10.1039/d3ay00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
For several decades, researchers have been using protein-fragment complementation assay (PCA) approaches for biosensing to study protein-protein interaction for a variety of aims, including viral infection, cellular apoptosis, G protein coupled receptor (GPCR) signaling, drug and substrate screening, and protein aggregation and protein editing by CRISPR/Cas9. As a reporter, NanoLuc (NLuc), a smaller and the brightest engineered luciferase derived from deep-sea shrimp Oplophorus gracilirostris, has been found to have many benefits over other luminescent enzymes in PCA. Inspired by the split green fluorescent protein (GFP) and its β-barrel structure, two split NLuc consisting of peptide fragments have been reported including the binary and ternary NLuc systems. NanoBiT® (large fragment + peptide) has been used extensively. In contrast, tripart split NLuc (large fragment + 2 peptides) has been applied and hardly used, while it has some advantages over NanoBiT in some studies. Nevertheless, tripart NLuc has some drawbacks and challenges to overcome but has several potential characteristics to become a multifunctional and powerful tool. In this review, several aspects of tripart NLuc are studied and a brief comparison with NanoBiT® is given.
Collapse
Affiliation(s)
- Mina Oliayi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Zhang A, Portugal Barron D, Chen EW, Guo Z. A protein aggregation platform that distinguishes oligomers from amyloid fibrils. Analyst 2023; 148:2283-2294. [PMID: 37129054 PMCID: PMC10266934 DOI: 10.1039/d3an00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deposition of aggregated proteins is a pathological feature in many neurodegenerative disorders such as Alzheimer's and Parkinson's. In addition to insoluble amyloid fibrils, protein aggregation leads to the formation of soluble oligomers, which are more toxic and pathogenic than fibrils. However, it is challenging to screen for inhibitors targeting oligomers due to the overlapping processes of oligomerization and fibrillization. Here we report a protein aggregation platform that uses intact and split TEM-1 β-lactamase proteins as reporters of protein aggregation. The intact β-lactamase fused with an amyloid protein can report the overall protein aggregation, which leads to loss of lactamase activity. On the other hand, reconstitution of active β-lactamase from the split lactamase construct requires the formation of amyloid oligomers, making the split lactamase system sensitive to oligomerization. Using Aβ, a protein that forms amyloid plaques in Alzheimer's disease, we show that the growth curves of bacterial cells expressing either intact or split lactamase-Aβ fusion proteins can report changes in the Aβ aggregation. The cell lysate lactamase activity assays show that the oligomer fraction accounts for 20% of total activity for the split lactamase-Aβ construct, but only 3% of total activity for the intact lactamase-Aβ construct, confirming the sensitivity of the split lactamase to oligomerization. The combination of the intact and split lactamase constructs allows the distinction of aggregation modulators targeting oligomerization from those targeting overall aggregation. These low-cost bacterial cell-based and biochemical assays are suitable for high-throughput screening of aggregation inhibitors targeting oligomers of various amyloid proteins.
Collapse
Affiliation(s)
- Amy Zhang
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Diana Portugal Barron
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Erica W Chen
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
van Solinge TS, Mahjoum S, Ughetto S, Sammarco A, Broekman ML, Breakefield XO, O’Brien KP. Illuminating cellular and extracellular vesicle-mediated communication via a split-Nanoluc reporter in vitro and in vivo. CELL REPORTS METHODS 2023; 3:100412. [PMID: 36936071 PMCID: PMC10014296 DOI: 10.1016/j.crmeth.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.
Collapse
Affiliation(s)
- Thomas S. van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Alessandro Sammarco
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Marike L.D. Broekman
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Killian P. O’Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Boissinot S, Ducousso M, Brault V, Drucker M. Bioluminescence Production by Turnip Yellows Virus Infectious Clones: A New Way to Monitor Plant Virus Infection. Int J Mol Sci 2022; 23:ijms232213685. [PMID: 36430165 PMCID: PMC9692398 DOI: 10.3390/ijms232213685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
We used the NanoLuc luciferase bioluminescent reporter system to detect turnip yellows virus (TuYV) in infected plants. For this, TuYV was genetically tagged by replacing the C-terminal part of the RT protein with full-length NanoLuc (TuYV-NL) or with the N-terminal domain of split NanoLuc (TuYV-N65-NL). Wild-type and recombinant viruses were agro-infiltrated in Nicotiana benthamiana, Montia perfoliata, and Arabidopsis thaliana. ELISA confirmed systemic infection and similar accumulation of the recombinant viruses in N. benthamiana and M. perfoliata but reduced systemic infection and lower accumulation in A. thaliana. RT-PCR analysis indicated that the recombinant sequences were stable in N. benthamiana and M. perfoliata but not in A. thaliana. Bioluminescence imaging detected TuYV-NL in inoculated and systemically infected leaves. For the detection of split NanoLuc, we constructed transgenic N. benthamiana plants expressing the C-terminal domain of split NanoLuc. Bioluminescence imaging of these plants after agro-infiltration with TuYV-N65-NL allowed the detection of the virus in systemically infected leaves. Taken together, our results show that NanoLuc luciferase can be used to monitor infection with TuYV.
Collapse
Affiliation(s)
- Sylvaine Boissinot
- Santé de la Vigne et Qualiité du Vin, Unité Mixte de Recherche 1131, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre Grand Est, Université Strasbourg, 68000 Colmar, France
| | - Marie Ducousso
- Plant Health Institute Montpellier, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CIRAD, Institut de Recherche pour le Développement, Institut Agro, Université Montpellier, 34980 Montferrier sur Lez, France
| | - Véronique Brault
- Santé de la Vigne et Qualiité du Vin, Unité Mixte de Recherche 1131, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre Grand Est, Université Strasbourg, 68000 Colmar, France
| | - Martin Drucker
- Santé de la Vigne et Qualiité du Vin, Unité Mixte de Recherche 1131, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre Grand Est, Université Strasbourg, 68000 Colmar, France
- Correspondence:
| |
Collapse
|
8
|
Ng KK, Prescher JA. Generalized Bioluminescent Platform To Observe and Track Cellular Interactions. Bioconjug Chem 2022; 33:1876-1884. [PMID: 36166258 DOI: 10.1021/acs.bioconjchem.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-to-cell communications are critical to biological processes ranging from embryonic development to cancer progression. Several imaging strategies have been developed to capture such interactions, but many are challenging to deploy in thick tissues and other complex environments. Here, we report a platform termed Luminescence to Observe and Track Intercellular Interactions (LOTIIS). The approach features split fragments of a luciferase enzyme that reassemble when target cells come into proximity. One fragment is secreted by "sender" cells, and the complementary piece is secreted by "receiver" cells. Split reporter assembly is facilitated by a single chain variable fragment (scFv)-peptide interaction on the receiver cell, resulting in localized light production. We demonstrate that LOTIIS can rapidly label cells in close proximity in a time- and distance-dependent fashion. The platform is also compatible with bioluminescence resonance energy transfer probes for multiplexed imaging. Collectively, these data suggest that LOTIIS will enable a variety of cellular interactions to be tracked in biological settings.
Collapse
Affiliation(s)
- Kevin K Ng
- Departments of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States.,Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
A Split NanoLuc Reporter Quantitatively Measures Circular RNA IRES Translation. Genes (Basel) 2022; 13:genes13020357. [PMID: 35205400 PMCID: PMC8871761 DOI: 10.3390/genes13020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/02/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) are RNA secondary structures that mediate translation independent from the m7G RNA cap. The dicistronic luciferase assay is the most frequently used method to measure IRES-mediated translation. While this assay is quantitative, it requires numerous controls and can be time-consuming. Circular RNAs generated by splinted ligation have been shown to also accurately report on IRES-mediated translation, however suffer from low yield and other challenges. More recently, cellular sequences were shown to facilitate RNA circle formation through backsplicing. Here, we used a previously published backsplicing circular RNA split GFP reporter to create a highly sensitive and quantitative split nanoluciferase (NanoLuc) reporter. We show that NanoLuc expression requires backsplicing and correct orientation of a bona fide IRES. In response to cell stress, IRES-directed NanoLuc expression remained stable or increased while a capped control reporter decreased in translation. In addition, we detected NanoLuc expression from putative cellular IRESs and the Zika virus 5' untranslated region that is proposed to harbor IRES function. These data together show that our IRES reporter construct can be used to verify, identify and quantify the ability of sequences to mediate IRES-translation within a circular RNA.
Collapse
|
10
|
Li J, Wang X, Dong G, Yan C, Cui Y, Zhang Z, Du L, Li M. Novel furimazine derivatives for nanoluciferase bioluminescence with various C-6 and C-8 substituents. Org Biomol Chem 2021; 19:7930-7936. [PMID: 34549229 DOI: 10.1039/d1ob01098k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoluciferase (NLuc) is the emerging commercially available luciferase considering its small size and superior bioluminescence performance. Nevertheless, this bioluminescence system has some limitations, including narrow emission wavelength and single substrate. Herein, a series of novel furimazine derivatives at the C-6 and C-8 positions of the imidazopyrazinone core have been designed and synthesized for extension of the bioluminescence substrates. It should be noted that two compounds, molecules A2 (2-(furan-2-ylmethyl)-6-(4-(hydroxymethyl)phenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one) and A3 (2-(furan-2-ylmethyl)-6-(4-amino-3-fluorophenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one), display reasonable bioluminescence properties for in vitro and in vivo biological evaluations. In particular, compound A3 can broaden the application of NLuc bioluminescence techniques, especially for in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Jie Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaoxu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chongzheng Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yuanyuan Cui
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc Trans 2021; 48:2643-2655. [PMID: 33242085 DOI: 10.1042/bst20200440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The small engineered luciferase NanoLuc has rapidly become a powerful tool in the fields of biochemistry, chemical biology, and cell biology due to its exceptional brightness and stability. The continuously expanding NanoLuc toolbox has been employed in applications ranging from biosensors to molecular and cellular imaging, and currently includes split complementation variants, engineering techniques for spectral tuning, and bioluminescence resonance energy transfer-based concepts. In this review, we provide an overview of state-of-the-art NanoLuc-based sensors and switches with a focus on the underlying protein engineering approaches. We discuss the advantages and disadvantages of various strategies with respect to sensor sensitivity, modularity, and dynamic range of the sensor and provide a perspective on future strategies and applications.
Collapse
|
12
|
Cho EJ, Dalby KN. Luminescence Energy Transfer-Based Screening and Target Engagement Approaches for Chemical Biology and Drug Discovery. SLAS DISCOVERY 2021; 26:984-994. [PMID: 34330171 DOI: 10.1177/24725552211036056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Luminescence is characterized by the spontaneous emission of light resulting from either chemical or biological reactions. Because of their high sensitivity, reduced background interference, and applicability to numerous situations, luminescence-based assay strategies play an essential role in early-stage drug discovery. Newer developments in luminescence-based technologies have dramatically affected the ability of researchers to investigate molecular binding events. At the forefront of these developments are the nano bioluminescence resonance energy transfer (NanoBRET) and amplified luminescent proximity homogeneous assay (Alpha) technologies. These technologies have opened up numerous possibilities for analyzing the molecular biophysical properties of complexes in environments such as cell lysates. Moreover, NanoBRET enables the validation and quantitation of the interactions between therapeutic targets and small molecules in live cells, representing an essential benchmark for preclinical drug discovery. Both techniques involve proximity-based luminescence energy transfer, in which excited-state energy is transferred from a donor to an acceptor, where the efficiency of transfer depends on proximity. Both approaches can be applied to high-throughput compound screening in biological samples, with the NanoBRET assay providing opportunities for live-cell screening. Representative applications of both technologies for assessing physical interactions and associated challenges are discussed.
Collapse
Affiliation(s)
- Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Tang S, Wang W, Zhang X. Direct visualization and profiling of protein misfolding and aggregation in live cells. Curr Opin Chem Biol 2021; 64:116-123. [PMID: 34246835 DOI: 10.1016/j.cbpa.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 10/20/2022]
Abstract
Over the past few years, research tools have been developed to monitor the multistep protein aggregation process in live cells, a process that has been associated with a growing number of human diseases. Herein, we describe recent advances in methods that can either survey the distribution of aggregation at the level of the cellular proteome using mass spectroscopy or discern the multistep aggregation process of specific proteins of interest via fluorescence signals. Future development and application of such technologies are expected to provide insights on mechanisms, diagnosis, and treatment of diseases rooted in protein aggregation.
Collapse
Affiliation(s)
- Sicheng Tang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Wenting Wang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
14
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
15
|
Wolstenholme CH, Hu H, Ye S, Funk BE, Jain D, Hsiung CH, Ning G, Liu Y, Li X, Zhang X. AggFluor: Fluorogenic Toolbox Enables Direct Visualization of the Multi-Step Protein Aggregation Process in Live Cells. J Am Chem Soc 2020; 142:17515-17523. [PMID: 32915553 DOI: 10.1021/jacs.0c07245] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrantly processed or mutant proteins misfold and assemble into a variety of soluble oligomers and insoluble aggregates, a process that is associated with an increasing number of diseases that are not curable or manageable. Herein, we present a chemical toolbox, AggFluor, that allows for live cell imaging and differentiation of complex aggregated conformations in live cells. Based on the chromophore core of green fluorescent proteins, AggFluor is comprised of a series of molecular rotor fluorophores that span a wide range of viscosity sensitivity. As a result, these compounds exhibit differential turn-on fluorescence when incorporated in either soluble oligomers or insoluble aggregates. This feature allows us to develop, for the first time, a dual-color imaging strategy to distinguish unfolded protein oligomers from insoluble aggregates in live cells. Furthermore, we have demonstrated how small molecule proteostasis regulators can drive formation and disassembly of protein aggregates in both conformational states. In summary, AggFluor is the first set of rationally designed molecular rotor fluorophores that evenly cover a wide range of viscosity sensitivities. This set of fluorescent probes not only change the status quo of current imaging methods to visualize protein aggregation in live cells but also can be generally applied to study other biological processes that involve local viscosity changes with temporal and spatial resolutions.
Collapse
|
16
|
Bozhanova NG, Gavrikov AS, Mishin AS, Meiler J. DiB-splits: nature-guided design of a novel fluorescent labeling split system. Sci Rep 2020; 10:11049. [PMID: 32632329 PMCID: PMC7338535 DOI: 10.1038/s41598-020-67095-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Fluorogen-activating proteins (FAPs) are innovative fluorescent probes combining advantages of genetically-encoded proteins such as green fluorescent protein and externally added fluorogens that allow for highly tunable and on demand fluorescent signaling. Previously, a panel of green- and red-emitting FAPs has been created from bacterial lipocalin Blc (named DiBs). Here we present a rational design as well as functional and structural characterization of the first self-assembling FAP split system, DiB-splits. This new system decreases the size of the FAP label to ~8-12 kDa while preserving DiBs' unique properties: strong increase in fluorescence intensity of the chromophore upon binding, binding affinities to the chromophore in nanomolar to low micromolar range, and high photostability of the protein-ligand complex. These properties allow for use of DiB-splits for wide-field, confocal, and super-resolution fluorescence microscopy. DiB-splits also represent an attractive starting point for further design of a protein-protein interaction detection system as well as novel FAP-based sensors.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany.
| |
Collapse
|
17
|
Nelson T, Liang S, Stains CI. A Luminescence-Based System for Identification of Genetically Encodable Inhibitors of Protein Aggregation. ACS OMEGA 2020; 5:12974-12978. [PMID: 32548481 PMCID: PMC7288563 DOI: 10.1021/acsomega.0c00779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Molecules that disrupt protein aggregation represent potential tool compounds for the investigation of numerous human disease states. However, the identification of small molecules capable of disrupting protein aggregation has proven challenging. Larger biomolecules such as antibodies and proteins are promising alternatives due to their increased size. Despite the promise of protein-based inhibitors, generalizable assays are needed to more readily identify proteins capable of inhibiting aggregation. Herein, we utilize our previously reported self-assembling NanoLuc luciferase fragments to engineer a platform in which both detection reagents are expressed from the same plasmid, enabling facile co-transformation with a genetically encodable inhibitor. This streamlined system is capable of detecting changes in the solubility of amylin, huntingtin, and amyloid-β (Aβ) proteins in response to mutations, small-molecule inhibitors, and expression of genetically encodable inhibitors. This improved platform provides a means to begin to identify protein-based inhibitors with improved efficacy.
Collapse
Affiliation(s)
- Travis
J. Nelson
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Shuo Liang
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- University
of Virginia Cancer Center, University of
Virginia, Charlottesville, Virginia 22904, United States
- Nebraska
Center for Integrated Biomolecular Communication, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Cancer
Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer
Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
18
|
Novel NanoLuc-type substrates with various C-6 substitutions. Bioorg Med Chem Lett 2020; 30:127085. [DOI: 10.1016/j.bmcl.2020.127085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
|
19
|
Nelson TJ, Truong T, Truong B, Bilyeu CV, Zhao J, Stains CI. A luminescence-based assay for monitoring changes in alpha-synuclein aggregation in living cells. RSC Adv 2020; 10:16675-16678. [PMID: 32489651 PMCID: PMC7266166 DOI: 10.1039/d0ra02720k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by the accumulation of protein aggregates in the brain, termed Lewy bodies. Lewy bodies are predominantly composed of α-synuclein and mutations that increase the aggregation potential of α-synuclein have been associated with early on-set disease. Assays capable of reporting on the solubility of α-synuclein in living cells could provide a means to interrogate the influence of mutations on aggregation as well as identify small molecules capable of modulating the aggregation of α-synuclein. Herein, we repurpose our previously reported self-assembling NanoLuc luciferase fragments to engineer a platform for detecting α-synuclein solubility in living cells. This new assay is capable of reporting on changes in α-synuclein solubility caused by disease-relevant mutations as well as inhibitors of aggregation. In the long term, this new assay platform provides a means to investigate the influence of mutations on α-synuclein solubility as well as identify potential tool compounds capable of modulating α-synuclein aggregation.
Collapse
Affiliation(s)
- Travis J Nelson
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Tiffany Truong
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - BaoLong Truong
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Camden V Bilyeu
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Jia Zhao
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
20
|
Kakizuka T, Takai A, Yoshizawa K, Okada Y, Watanabe TM. An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementation. Chem Commun (Camb) 2020; 56:3625-3628. [PMID: 32104841 DOI: 10.1039/c9cc08664a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent protein-based reporter systems are used to track gene expression in cells. Here, we propose a modified bioluminescence resonance energy transfer (BRET) reporter as a maturation-less reporter that utilizes a peptide-assisted complementation strategy. Using effective dimerized peptides obtained from library-versus-library screening with more than 4000 candidates, rapid activation of the reporter was achieved.
Collapse
Affiliation(s)
- Taishi Kakizuka
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita-Shi, Osaka 565-0874, Japan.
| | | | | | | | | |
Collapse
|
21
|
Dimri S, Arora R, Jasani A, De A. Dynamic monitoring of STAT3 activation in live cells using a novel STAT3 Phospho-BRET sensor. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2019; 9:321-334. [PMID: 31976162 PMCID: PMC6971483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Phosphorylation (pY705) mediated homodimerization is a rate-limiting step controlling STAT3 key oncogenic functions making it an attractive target for drug discovery. Hence, this study reports development of a sensitive and versatile STAT3 Phospho-BRET biosensor platform technology to monitor activation dynamics of STAT3 signalling directly from live cells. Categorically, we first demonstrate that NanoLuc donor and TurboFP635 acceptor serves as an excellent BRET system over other tested fluorophores like mOrange and TagRFP, both for live cells as well as in vivo optical imaging of protein-protein interactions. Based on initial multi-parametric optimizations, our Phospho-BRET sensor developed by fusing STAT3 with NanoLuc and TurboFP at the C-terminus, successfully captured the activation kinetics of STAT3 in response to different ligands (e.g. IL6 & EGF) and across multiple cancer cell types either with or without the endogenous STAT3 pool. Perturbation in EGF-mediated STAT3 BRET activation signal upon blocking with EGFR neutralizing antibody further confirms the specificity of the sensor to judge ligand-receptor pathway dependent STAT3 activation. Finally, we determine the high-throughput compatibility of the developed biosensor by testing a few known/unknown STAT3 inhibitors in a 96- and 384-well plate format. The results from this screen revealed that drug molecules such as curcumin and niclosamide are more efficient inhibitors over known molecule like Stattic. Thus, the STAT3 Phospho-BRET sensor is a first of its kind live cell platform technology developed for its use to study STAT3 pathway dynamics and screen potential drug molecules in vivo.
Collapse
Affiliation(s)
- Shalini Dimri
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi Mumbai, India
- Department of Life Sciences, Homi Bhabha National InstituteMumbai, India
| | - Rohit Arora
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi Mumbai, India
| | - Akshi Jasani
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi Mumbai, India
- Department of Life Sciences, Homi Bhabha National InstituteMumbai, India
| |
Collapse
|
22
|
Nelson TJ, Zhao J, Stains CI. Utilizing split-NanoLuc luciferase fragments as luminescent probes for protein solubility in living cells. Methods Enzymol 2019; 622:55-66. [PMID: 31155065 DOI: 10.1016/bs.mie.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein misfolding and aggregation is now recognized as a hallmark of numerous human diseases. Standard bioanalytical techniques for monitoring protein aggregation generally rely on small molecules that provide an optical readout of fibril formation. While these methods have been useful for mechanistic studies, additional approaches are required to probe the equilibrium between soluble and insoluble protein within living systems. Such approaches could provide platforms for the identification of inhibitors of protein aggregation as well as a means to investigate the effect of mutations on protein aggregation in model systems. In this chapter, we provide detailed protocols for employing split-NanoLuc luciferase (Nluc) fragments to monitor changes in protein solubility in bacterial and mammalian cells. This sensitive luminesce-based assay can report upon changes in protein solubility induced by inhibitors and disease-relevant mutations.
Collapse
Affiliation(s)
- Travis J Nelson
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jia Zhao
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cliff I Stains
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States; Cancer Genes and Molecular Recognition Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
23
|
Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E, Lange JJ, Rodríguez Gama A, Box A, Unruh JR, Cook M, Halfmann R. Quantifying Nucleation In Vivo Reveals the Physical Basis of Prion-like Phase Behavior. Mol Cell 2019; 71:155-168.e7. [PMID: 29979963 PMCID: PMC6086602 DOI: 10.1016/j.molcel.2018.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023]
Abstract
Protein self-assemblies modulate protein activities over biological timescales that can exceed the lifetimes of the proteins or even the cells that harbor them. We hypothesized that these timescales relate to kinetic barriers inherent to the nucleation of ordered phases. To investigate nucleation barriers in living cells, we developed distributed amphifluoric FRET (DAmFRET). DAmFRET exploits a photoconvertible fluorophore, heterogeneous expression, and large cell numbers to quantify via flow cytometry the extent of a protein's self-assembly as a function of cellular concentration. We show that kinetic barriers limit the nucleation of ordered self-assemblies and that the persistence of the barriers with respect to concentration relates to structure. Supersaturation resulting from sequence-encoded nucleation barriers gave rise to prion behavior and enabled a prion-forming protein, Sup35 PrD, to partition into dynamic intracellular condensates or to form toxic aggregates. Our results suggest that nucleation barriers govern cytoplasmic inheritance, subcellular organization, and proteotoxicity.
Collapse
Affiliation(s)
- Tarique Khan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jianzheng Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Ellen Ketter
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Malcolm Cook
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
24
|
Fares M, Zhang X. Quantification of Cellular Proteostasis in Live Cells by Fluorogenic Assay Using the AgHalo Sensor. ACTA ACUST UNITED AC 2018; 11:e58. [PMID: 30489038 DOI: 10.1002/cpch.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proper cellular proteostasis is essential to cellular fitness and viability. Exogenous stress conditions compromise proteostasis and cause aggregation of cellular proteins. We have developed a fluorogenic sensor (AgHalo) to quantify stress-induced proteostasis deficiency. The AgHalo sensor uses a destabilized HaloTag variant to represent aggregation-prone cellular proteins and is equipped with a series of fluorogenic probes that exhibit a fluorescence increase when the sensor forms either soluble oligomers or insoluble aggregates. Herein, we present protocols that describe how the AgHalo sensor can be employed to visualize and quantify proteome stress in live cells using a direct fluorescence read-out and visualization with a fluorescence microplate reader and a microscope. Additionally, protocols for using the AgHalo sensor in combination with fluorogenic probes and commercially available HaloTag probes to enable two-color imaging experiments are described. These protocols will enable use of the AgHalo sensor to visualize and quantify proteostasis in live cells, a task that is difficult to accomplish using previous, always-fluorescent methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew Fares
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
25
|
Serra LC, York LJ, Gamil A, Balmer P, Webber C. A Review of Meningococcal Disease and Vaccination Recommendations for Travelers. Infect Dis Ther 2018; 7:219-234. [PMID: 29550909 PMCID: PMC5986680 DOI: 10.1007/s40121-018-0196-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/14/2022] Open
Abstract
International travel has been steadily increasing since the middle of the twentieth century, including travel to regions with high levels of endemic meningococcal disease and areas with sporadic or sustained meningococcal outbreaks. Although invasive meningococcal disease (IMD) is relatively rare in travelers since the advent of quadrivalent meningococcal vaccines, it remains a serious concern because of its rapid progression, poor prognosis and outcomes, associated treatment delays, and the potential to precipitate outbreaks. Moreover, fatality occurs in up to 22% of those infected. This review will focus on IMD in travelers, with an emphasis on IMD epidemiology and the geographic regions of potential concern for international travelers. As vaccination is the best approach for preventing IMD among travelers, currently available meningococcal vaccines and corresponding country-specific national meningococcal vaccination recommendations, where available, will be summarized by age and type of vaccine recommended. The use of the quadrivalent meningococcal vaccines, specifically the tetanus toxoid conjugate vaccine (including MenACWY-TT; Nimenrix®), as a protective measure against IMD in travelers will be emphasized. FUNDING Pfizer Inc.
Collapse
Affiliation(s)
- Lidia C Serra
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA.
| | - Laura J York
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Amgad Gamil
- Pfizer Vaccines, Global Medical Development, Scientific and Clinical Affairs, Dubai, United Arab Emirates
| | - Paul Balmer
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Chris Webber
- Pfizer Vaccines, Clinical Research and Development, Pearl River, NY, USA
| |
Collapse
|
26
|
Wiens MD, Campbell RE. Surveying the landscape of optogenetic methods for detection of protein-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1415. [PMID: 29334187 PMCID: PMC5902417 DOI: 10.1002/wsbm.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
Abstract
Mapping the protein-protein interaction (PPi) landscape is of critical importance to furthering our understanding how cells and organisms function. Optogenetic methods, that is, approaches that utilize genetically encoded fluorophores or fluorogenic enzyme reactions, uniquely enable the visualization of biochemical phenomena in live cells with high spatial and temporal accuracy. Applying optogenetic methods to the detection of PPis requires the engineering of protein-based systems in which an optical signal undergoes a substantial change when the two proteins of interest interact. In recent years, researchers have developed a number of creative and effective optogenetic methods that achieve this goal, and used them to further elaborate our map of the PPi landscape. In this review, we provide an introduction to the general principles of optogenetic PPi detection, and then provide a number of representative examples of how these principles have been applied. We have organized this review by categorizing methods based on whether the signal generated is reversible or irreversible in nature, and whether the signal is localized or nonlocalized at the subcellular site of the PPi. We discuss these techniques giving both their benefits and drawbacks to enable rational choices about their potential use. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Matthew D. Wiens
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| |
Collapse
|
27
|
Liu Y, Miao K, Li Y, Fares M, Chen S, Zhang X. A HaloTag-Based Multicolor Fluorogenic Sensor Visualizes and Quantifies Proteome Stress in Live Cells Using Solvatochromic and Molecular Rotor-Based Fluorophores. Biochemistry 2018; 57:4663-4674. [DOI: 10.1021/acs.biochem.8b00135] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Fares M, Li Y, Liu Y, Miao K, Gao Z, Zhai Y, Zhang X. A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. Bioconjug Chem 2018; 29:215-224. [DOI: 10.1021/acs.bioconjchem.7b00763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Matthew Fares
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yinghao Li
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yu Liu
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Kun Miao
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Zi Gao
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yufeng Zhai
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Xin Zhang
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Hiblot J, Yu Q, Sabbadini MD, Reymond L, Xue L, Schena A, Sallin O, Hill N, Griss R, Johnsson K. Luciferases with Tunable Emission Wavelengths. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julien Hiblot
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Qiuliyang Yu
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Marina D.B. Sabbadini
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Luc Reymond
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Lin Xue
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Alberto Schena
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Olivier Sallin
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Nicholas Hill
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Rudolf Griss
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Kai Johnsson
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| |
Collapse
|
30
|
Hiblot J, Yu Q, Sabbadini MD, Reymond L, Xue L, Schena A, Sallin O, Hill N, Griss R, Johnsson K. Luciferases with Tunable Emission Wavelengths. Angew Chem Int Ed Engl 2017; 56:14556-14560. [DOI: 10.1002/anie.201708277] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Julien Hiblot
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Qiuliyang Yu
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Marina D.B. Sabbadini
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Luc Reymond
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Lin Xue
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| | - Alberto Schena
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Olivier Sallin
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Nicholas Hill
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Rudolf Griss
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
| | - Kai Johnsson
- Ecole Polytechnique Fédérale de Lausanne, EPFL; Institute of Chemical Sciences and Engineering, ISIC, NCCR in Chemical Biology; 1015 Lausanne Switzerland
- Max-Planck-Institute for Medical Research; Department of Chemical Biology; 69120 Heidelberg Germany
| |
Collapse
|
31
|
Liu Y, Fares M, Dunham NP, Gao Z, Miao K, Jiang X, Bollinger SS, Boal AK, Zhang X. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yu Liu
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
| | - Matthew Fares
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
| | - Noah P. Dunham
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Zi Gao
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Kun Miao
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
| | - Xueyuan Jiang
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Samuel S. Bollinger
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
| | - Amie K. Boal
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Xin Zhang
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
- The Huck Institutes of Life Sciences; The Pennsylvania State University; University Park PA 16802 USA
| |
Collapse
|
32
|
Liu Y, Fares M, Dunham NP, Gao Z, Miao K, Jiang X, Bollinger SS, Boal AK, Zhang X. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress. Angew Chem Int Ed Engl 2017; 56:8672-8676. [PMID: 28557281 DOI: 10.1002/anie.201702417] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 11/08/2022]
Abstract
Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Fares
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Noah P Dunham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zi Gao
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kun Miao
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xueyuan Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samuel S Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
33
|
Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time. Sci Rep 2017; 7:3187. [PMID: 28600500 PMCID: PMC5466623 DOI: 10.1038/s41598-017-03486-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated β-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.
Collapse
|
34
|
A replication-competent foot-and-mouth disease virus expressing a luciferase reporter. J Virol Methods 2017; 247:38-44. [PMID: 28532601 PMCID: PMC5490781 DOI: 10.1016/j.jviromet.2017.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
We have generated a replication-competent foot-and-mouth disease virus expressing Nanoluciferase, designated as Nano-FMDV. Nano-FMDV is genetically stable. The replication of Nano-FMDV can be monitored by bioluminescent methods. This reporter virus has potential applications in real-time monitoring of FMDV infection in vitro and in vivo, and in screening of antivirals and antibodies.
Bioluminescence is a powerful tool in the study of viral infection both in vivo and in vitro. Foot-and-mouth disease virus (FMDV) has a small RNA genome with a limited tolerance to foreign RNA entities. There has been no success in making a reporter FMDV expressing a luciferase in infected cell culture supernatants. We report here for the first time a replication-competent FMDV encoding Nanoluciferase, named as Nano-FMDV. Nano-FMDV is genetically stable during serial passages in cells and exhibits growth kinetics and plaque morphology similar to its parental virus. There are applications for the use of Nano-FMDV such as real-time monitoring of FMDV replication in vitro and in vivo.
Collapse
|
35
|
Mo X, Qi Q, Ivanov AA, Niu Q, Luo Y, Havel J, Goetze R, Bell S, Moreno CS, Cooper LAD, Johns MA, Khuri FR, Du Y, Fu H. AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay. Mol Pharmacol 2017; 91:339-347. [PMID: 28087810 DOI: 10.1124/mol.116.107623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.
Collapse
Affiliation(s)
- Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Qiankun Niu
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Yin Luo
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Jonathan Havel
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Russell Goetze
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Sydney Bell
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Carlos S Moreno
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Lee A D Cooper
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Margaret A Johns
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Fadlo R Khuri
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| |
Collapse
|
36
|
Lindberg H, Sandersjöö L, Meister SW, Uhlén M, Löfblom J, Ståhl S. Flow-cytometric screening of aggregation-inhibitors using a fluorescence-assisted intracellular method. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Hanna Lindberg
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Lisa Sandersjöö
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Sebastian W. Meister
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Mathias Uhlén
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, School of Biotechnology; KTH - Royal Institute of Technology; Solna Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
37
|
Abstract
Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways.
Collapse
|
38
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
39
|
England CG, Ehlerding EB, Cai W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug Chem 2016; 27:1175-1187. [PMID: 27045664 DOI: 10.1021/acs.bioconjchem.6b00112] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a nonideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a nonbiased manner, allowing the audience to adopt their own views of this novel system.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Radiology, University of Wisconsin - Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| |
Collapse
|
40
|
Davis MI, Simeonov A, Auld D. Literature Search and Review. Assay Drug Dev Technol 2016. [DOI: 10.1089/adt.2016.29034.lit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Doug Auld
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
41
|
Zhao J, Vu Q, Stains CI. Luminescent platforms for monitoring changes in the solubility of amylin and huntingtin in living cells. MOLECULAR BIOSYSTEMS 2016; 12:2984-7. [DOI: 10.1039/c6mb00454g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-based assays for amylin and huntingtin solubility, capable of reporting on the influence of mutations and small molecules, are reported.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Quyen Vu
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| | - Cliff I. Stains
- Department of Chemistry
- University of Nebraska – Lincoln
- Lincoln
- USA
| |
Collapse
|