1
|
Parveen S, Chaurasia N, Gupta S, Vidyarthi S, Gupta N, Pandey P, Pant B, Srivastava KR, Kumar N, Goel A. Rationally Designed G-Quadruplex Selective "Turn-On" NIR Fluorescent Probe with Large Stokes Shift for Nucleic Acid Research-Based Applications. ACS APPLIED BIO MATERIALS 2024. [PMID: 39466599 DOI: 10.1021/acsabm.4c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Guanine-rich DNA/RNA sequences can form Hoogsteen bonds to adopt noncanonical secondary structures called G-quadruplexes, and these have been associated with diverse cellular processes. There has been considerable research interest in the design of G4-interacting ligands for cellular probing of the G4 structure and understanding its associated biological function. Most of the fluorescent G4 ligands either do not have significant selectivity over other nucleic acid structures, have high Stokes shift, or are not in the near-infrared (NIR) region, which limits its cellular visualization. The current work involves the rational design and synthesis of NIR fluorescent probes comprising a (Z)-1-methyl-2-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium scaffold. Among the designed molecules, 4a exhibited far-red fluorescence (λmax = 680 nm) with large Stokes shift (∼182 nm) upon selective binding to human telomeric G-quadruplexes. The dye 4a does not disturb the conformation and stability of G-quadruplexes, thereby making it suitable for nucleic acid research based applications. Interestingly, 4a showed remarkable selectivity over single- and double-stranded structures in contrast to a commercially available quadruplex binding probe, Thiazole orange (TO). The molecular docking studies indicate that 4a binds at the groove region of the telomeric DNA G-quadruplex through π-π stacking interactions with the quinoline and amine-substituted phenyl ring and with the phosphate backbone through anion-π interactions with the benzothiazole ring. The designed molecule 4a has interesting photophysical properties, cell permeability, and biocompatibility with minimal cytotoxicity. Fluorescence imaging studies in live HeLa cells showed that probe 4a binds to the transient population of the DNA G-quadruplex in the nucleus and RNA quadruplexes in the cytoplasm. In brief, G-quadruplex NIR fluorescent probe 4a with a higher signal/noise ratio has significant potential for cellular imaging studies and thus opens avenues to decipher the biological pathways for better understanding of G-quadruplex biology.
Collapse
Affiliation(s)
- Sajiya Parveen
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Nirupa Chaurasia
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Suchitra Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Seema Vidyarthi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Nisha Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Priyanka Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhaskar Pant
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Kinshuk Raj Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Niti Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Goel
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Zu S, Long Z, Zhang X, Sheng J, Xu Y, Sun H, Liu X, Shangguan D. A Comparative Study on the DNA Interactions and Biological Activities of Benzophenanthridine and Protoberberine Alkaloids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2170-2179. [PMID: 39213483 DOI: 10.1021/acs.jnatprod.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Numerous small molecules exert antitumor effects by interacting with DNA, thereby influencing processes, such as DNA replication, transcription, meiosis, and gene recombination. Benzophenanthridine and protoberberine alkaloids are known to bind DNA and exhibit many pharmacological activities. In this study, we conducted a comparative analysis of the interactions between these two classes of alkaloids with G-quadruplex (G4) DNA and double-stranded DNA (dsDNA). Protoberberine alkaloids showed a greater affinity for binding with G4s than with dsDNA, while benzophenanthridine alkaloids exhibited a significantly stronger binding capacity for dsDNA, especially in regions that are rich in AT base pairs. Benzophenanthridine alkaloids also exhibited much stronger toxicity to various cancer cells. Compared with protoberberine alkaloids, benzophenanthridine alkaloids displayed much stronger activity in inhibiting cellular DNA and RNA synthesis, arresting the cell cycle in the G2/M phase, inducing cell apoptosis, and leading to intracellular DNA damage. Given that dsDNA constitutes the predominant form of DNA within cells for the majority of the cell cycle, the significant antiproliferative activity of benzophenanthridine alkaloids could be attributed, in part, to their higher binding affinity for dsDNA, thereby exerting a more significant impact on cellular proliferation. These findings have valuable implications for understanding the biological activities of isoquinoline alkaloids and their antitumor applications.
Collapse
Affiliation(s)
- Shuang Zu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Haojun Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| |
Collapse
|
3
|
Robinson J, Stenspil SG, Maleckaite K, Bartlett M, Di Antonio M, Vilar R, Kuimova MK. Cellular Visualization of G-Quadruplex RNA via Fluorescence- Lifetime Imaging Microscopy. J Am Chem Soc 2024; 146:1009-1018. [PMID: 38151240 PMCID: PMC10786036 DOI: 10.1021/jacs.3c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Over the past decade, appreciation of the roles of G-quadruplex (G4) structures in cellular regulation and maintenance has rapidly grown, making the establishment of robust methods to visualize G4s increasingly important. Fluorescent probes are commonly used for G4 detection in vitro; however, achieving sufficient selectivity to detect G4s in a dense and structurally diverse cellular environment is challenging. The use of fluorescent probes for G4 detection is further complicated by variations of probe uptake into cells, which may affect fluorescence intensity independently of G4 abundance. In this work, we report an alternative small-molecule approach to visualize G4s that does not rely on fluorescence intensity switch-on and, thus, does not require the use of molecules with exclusive G4 binding selectivity. Specifically, we have developed a novel thiazole orange derivative, TOR-G4, that exhibits a unique fluorescence lifetime when bound to G4s compared to other structures, allowing G4 binding to be sensitively distinguished from non-G4 binding, independent of the local probe concentration. Furthermore, TOR-G4 primarily colocalizes with RNA in the cytoplasm and nucleoli of cells, making it the first lifetime-based probe validated for exploring the emerging roles of RNA G4s in cellulo.
Collapse
Affiliation(s)
- Jenna Robinson
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Molecular
Science Research Hub, Institute of Chemical
Biology, 82 Wood Lane, London W12 0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Stine G. Stenspil
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Karolina Maleckaite
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Molly Bartlett
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marco Di Antonio
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Molecular
Science Research Hub, Institute of Chemical
Biology, 82 Wood Lane, London W12 0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Ramon Vilar
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Molecular
Science Research Hub, Institute of Chemical
Biology, 82 Wood Lane, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- Department
of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Molecular
Science Research Hub, Institute of Chemical
Biology, 82 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
4
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Checkerboard arranged G4 nanostructure-supported electrochemical platform and its application to unique bio-enzymes examination. Bioelectrochemistry 2023; 149:108282. [DOI: 10.1016/j.bioelechem.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
6
|
He M, Sato Y, Nishizawa S. Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells. Analyst 2023; 148:636-642. [PMID: 36602142 DOI: 10.1039/d2an01804g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In contrast to well-established DNA-selective dyes for live cell imaging, RNA-selective dyes have been less developed owing to the challenges of making small molecules have RNA selectivity over DNA. Two kinds of dyes are now commercially available for nucleolar RNA imaging in cells, but these two dyes do not apply to living cells and have limited use in fixed and permeabilized cells. Herein, we report on thiazole orange (TO), a well-known nucleic acid stain, as a promising fluorogenic dye for nucleolar RNA imaging in living cells. TO shows clear response selectivity for RNA over DNA with a significant light-up property upon binding to RNA (λem = 532 nm, I/I0 = 580-fold, and Φbound/Φfree = 380) and is even applicable to wash-free imaging of living cells. More interestingly, 2TO, a regioisomer of TO in which the benzothiazole unit is connected to position 2 in the quinoline ring, performs much better (λem = 532 nm, I/I0 = 430-fold, Φbound/Φfree = 1200), having superior selectivity for RNA in both solution and living cells. The comparison with TO derivatives carrying different substituents at N1 of the quinoline ring reveals that the slight change in the TO framework significantly affects RNA selectivity, photostability and membrane permeability.
Collapse
Affiliation(s)
- Mengmeng He
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Wei C, Li H. Benzothiazole Derivatives Targeting G‐Quadruplex DNA: Synthesis, DNA Interaction and Living Cell Imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202202565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Haiying Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P.R. China
| |
Collapse
|
8
|
Biswas A, Singh SB, Todankar CS, Sudhakar S, Pany SPP, Pradeepkumar PI. Stabilization and fluorescence light-up of G-quadruplex nucleic acids using indolyl-quinolinium based probes. Phys Chem Chem Phys 2022; 24:6238-6255. [PMID: 35229834 DOI: 10.1039/d1cp04718c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
G-Quadruplexes (G4s) are four-stranded motifs formed by G-rich nucleic acid sequences. These structures harbor significant biological importance as they are involved in telomere maintenance, transcription, and translation. Owing to their dynamic and polymorphic nature, G4 structures relevant for therapeutic applications need to be stabilized by small-molecule ligands. Some of these ligands turn on fluorescence upon binding to G4 structures, which provides a powerful detection platform for G4 structures. Herein, we report the synthesis of fluorescent ligands based on the indolyl-quinolinium moiety to specifically stabilize G4 structures and sense DNA. CD titration and melting experiments have shown that the lead ligand induces the formation of parallel G4 with preferential stabilization of the c-MYC and c-KIT1 promoter G4s over the telomeric, h-RAS1 G4, and duplex DNA. Fluorimetric titration data revealed fluorescence enhancement when these ligands interact with G4 DNA structures. The fluorescence lifetime experiment of the ligand with different DNAs revealed three excited state lifetimes (ns), which indicates more than one binding site. MD studies showed that the ligand exhibits 3 : 1 stoichiometry of binding with c-MYC G4 DNA and revealed the unique structural features, which impart selectivity toward parallel topology. The ligand was found to have low cytotoxicity and exhibited preferential staining of DNA over RNA. Collectively, the results presented here offer avenues to harness indolyl-quinolinium scaffolds for sensing and selective stabilization of G4 structures.
Collapse
Affiliation(s)
- Annyesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Sushma B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Chaitra S Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | | | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
9
|
Long W, Zheng BX, Li Y, Huang XH, Lin DM, Chen CC, Hou JQ, Ou TM, Wong WL, Zhang K, Lu YJ. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res 2022; 50:1829-1848. [PMID: 35166828 PMCID: PMC8887543 DOI: 10.1093/nar/gkac090] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand–G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan-Min Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Tian-Miao Ou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P.R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Zhang L, Yi M, Zhong S, Liu J, Liu X, Bing T, Zhang N, Wei Y, Shangguan D. p-Aminostyryl thiazole orange derivatives for monitoring mitochondrial viscosity in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120394. [PMID: 34555696 DOI: 10.1016/j.saa.2021.120394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Viscosity of cell microenvironment plays a significant role in maintaining the normal life activities of cells. Particularly, the abnormal viscosity in mitochondria is closely associated with lots of diseases and cellular dysfunctions. Herein, we developed a group of p-aminostyryl thiazole orange derivatives with different amino side chains. These probes showed good fluorescence response to viscosity with twisted intramolecular charge transfer mechanism, among them, the probes with diethylamino (TOB), dibutylamino (TOC) and pyrrolidin (TOE) side chains showed better response to the viscosity with 78-fold, 55-fold, and 88-fold fluorescence enhancement in 95% glycerol solution respectively. TOB, TOC, and TOE could enter live cells and mainly located in mitochondria. Treatment HeLa cells with nystatin, lipopolysaccharide or oleic acid caused significant fluorescence enhancement of these probes, suggesting the good potential for monitoring the variation of mitochondrial viscosity, as well as for investigating the related physiological process of inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Lingling Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mengwen Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, China
| | - Shilong Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbiao Wei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, Zhejiang, China.
| |
Collapse
|
11
|
Guan L, Mao Y, Zhou Y, Feng X, Fu, Yile. Research Progress in Cyanine-Based Recognition Probes for G-Quadruplex DNA. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Kumar Gautam R, Bapli A, Jana R, Seth D. Photophysics of thiazole orange in deep eutectic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119812. [PMID: 33905961 DOI: 10.1016/j.saa.2021.119812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Photophysics and torsional dynamics of thiazole orange (TO) as a function of temperature have been studied in two deep eutectic solvents (DESs) using spectroscopic techniques. Two DESs are used as a solvent namely DES-I (choline chloride + urea, mole ratio 1: 2) and DES-II (N,N diethyl ethanol ammonium chloride + urea, mole ratio 1: 2). We explore the influence of DESs on the photophysical properties of TO. The fluorescence quantum yield and fluorescence lifetime of TO decreases with increasing temperature due to thermal deactivation. At higher temperature, fluorescence quantum yield of TO decreases in DESs may be due to the molecular rotor nature of TO, with the benzothiazole and quinoline ring of this dye being able to be rotated relative to each other in the excited state. In these solvents, the free volume idea was found to provide a truthful report of the solvent viscosity-temperature behavior, and the probe torsional dynamics. Fluorescence lifetime imaging microscopy (FLIM) was used to insight and observed the distribution of lifetime of TO in the surface of both DESs. The contact angle was determined to show the hygroscopic nature of the DESs.
Collapse
Affiliation(s)
- Rajesh Kumar Gautam
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Aloke Bapli
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Rabindranath Jana
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
13
|
Takada T, Nishida K, Honda Y, Nakano A, Nakamura M, Fan S, Kawai K, Fujitsuka M, Yamana K. Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions. Chembiochem 2021; 22:2729-2735. [PMID: 34191388 DOI: 10.1002/cbic.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Functional nucleic acids with the capability of generating fluorescence in response to hybridization events, microenvironment or structural changes are valuable as structural probes and chemical sensors. We now demonstrate the enzyme-assisted preparation of nucleic acids possessing multiple thiazole orange (TO) dyes and their fluorescent behavior, that show a spectral change from the typical monomer emission to the excimer-type red-shifted emission. We found that the fluorescent response and emission wavelength of the TO dyes were dependent on both the state of the DNA structure (single- or double-stranded DNA) and the arrangement of the TO dyes. We showed that the fluorescent behavior of the TO dyes can be applied for the detection of RNA molecules, suggesting that our approach for preparing the fluorescent nucleic acids functionalized with multiple TO dyes could be useful to design a fluorescence bioimaging and detection technique of biomolecules.
Collapse
Affiliation(s)
- Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Koma Nishida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Yurika Honda
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Aoi Nakano
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Mitsunobu Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Shuya Fan
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kazushige Yamana
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
14
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
15
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Long W, Zheng BX, Huang XH, She MT, Liu AL, Zhang K, Wong WL, Lu YJ. Molecular Recognition and Imaging of Human Telomeric G-Quadruplex DNA in Live Cells: A Systematic Advancement of Thiazole Orange Scaffold To Enhance Binding Specificity and Inhibition of Gene Expression. J Med Chem 2021; 64:2125-2138. [PMID: 33559473 DOI: 10.1021/acs.jmedchem.0c01656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 μM) was found to be generally higher than noncancer cells (IC50 = 52.3 μM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ao-Lu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514779, P. R. China
| |
Collapse
|
17
|
Gray MD, Deore PS, Chung AJ, Van Riesen AJ, Manderville RA, Prabhakar PS, Wetmore SD. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjug Chem 2020; 31:2596-2606. [PMID: 33156614 DOI: 10.1021/acs.bioconjchem.0c00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.
Collapse
Affiliation(s)
- Micaela D Gray
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Prashant S Deore
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew J Chung
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abigail J Van Riesen
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Preethi Seelam Prabhakar
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
18
|
Guan L, Zhao J, Sun W, Deng W, Wang L. Meso-Substituted Thiazole Orange for Selective Fluorescence Detection to G-Quadruplex DNA and Molecular Docking Simulation. ACS OMEGA 2020; 5:26056-26062. [PMID: 33073132 PMCID: PMC7557940 DOI: 10.1021/acsomega.0c03556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
The cyanine dye thiazole orange (TO, including 2TO and 4TO) is widely used as a light-up fluorescent probe upon binding to almost all forms of DNA, but it exhibits poor selectivity for recognizing G-quadruplex DNA (G-DNA), which has significant biological functions in biological processes and therapeutic applications. Here, introducing benzyl substituent to the meso position of the methine chain of 2TO is expected to selectively recognize G-DNA. The spectroscopic titrations reveal that modified 2TO (meso-Bn-2TO) has almost no background fluorescence in solution and shows a preference to bind with G-DNA over ssDNA, dsDNA, and ct-DNA. Specifically, meso-Bn-2TO 1a displays a strong fluorescent signal upon interaction with G-DNA and a very weak fluorescent signal upon interaction with ssDNA, dsDNA, and ct-DNA, displaying considerable selectivity for G-DNA. However, parent 2TO all gives a fluorescent signal in G-DNA, dsDNA, and ct-DNA. The fluorescence intensity of 1a increases nearly 80-162 times when bound with different G-DNA. The binding constants of 1a and 2TO to G-DNA htg22 are 3.16 and 1.52 μM, respectively. Molecular docking study of 1a and 2TO with different DNA reveals that introducing benzyl substituent to the meso position methine chain of 2TO alters the planarity of the chromophore, thus enhancing the interactions with G-DNA and weakening the interactions with duplex DNA and therefore realizing selective detection to G-DNA.
Collapse
Affiliation(s)
- Li Guan
- School
of Chemistry and Chemical Engineering, Xi’an
University of Architecture and Technology, Xi’an 710055, P. R. China
| | - Junlong Zhao
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Wei Sun
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Wenting Deng
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Lanying Wang
- Key
Laboratory of Synthetic and Natural Functional Molecule of the Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
19
|
Yu QQ, Wang MQ. Carbazole-based fluorescent probes for G-quadruplex DNA targeting with superior selectivity and low cytotoxicity. Bioorg Med Chem 2020; 28:115641. [DOI: 10.1016/j.bmc.2020.115641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 11/15/2022]
|
20
|
Bilgen E, Forough M, Persil Çetinkol Ö. A conjugated gold nanoparticle-azacyanine off-on-off fluorescence probe for sensitive and selective detection of G-quadruplexes. Talanta 2020; 217:121076. [DOI: 10.1016/j.talanta.2020.121076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
|
21
|
Benzothiazole applications as fluorescent probes for analyte detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01998-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Zhang L, Liu X, Lu S, Liu J, Zhong S, Wei Y, Bing T, Zhang N, Shangguan D. Thiazole Orange Styryl Derivatives as Fluorescent Probes for G-Quadruplex DNA. ACS APPLIED BIO MATERIALS 2020; 3:2643-2650. [DOI: 10.1021/acsabm.9b01243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lingling Zhang
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, PR China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbiao Wei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, PR China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
|
24
|
Li Y, Sun N, Ser HL, Long W, Li Y, Chen C, Zheng B, Huang X, Liu Z, Lu YJ. Antibacterial activity evaluation and mode of action study of novel thiazole-quinolinium derivatives. RSC Adv 2020; 10:15000-15014. [PMID: 35497125 PMCID: PMC9052103 DOI: 10.1039/d0ra00691b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
A new series of thiazole-quinolinium derivatives perturb the polymerization of FtsZ with strong antibacterial activities.
Collapse
Affiliation(s)
- Ying Li
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Ning Sun
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
- The State Key Laboratory of Chemical Biology and Drug Discovery
| | - Hooi-Leng Ser
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
- Novel Bacteria and Drug Discovery (NBDD) Research Group
| | - Wei Long
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Yanan Li
- Department of Pharmacy
- The Fifth Affiliated Hospital of Sun Yat-sen University
- Zhuhai
- P. R. China
| | - Cuicui Chen
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Boxin Zheng
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Xuanhe Huang
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Zhihua Liu
- The State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| |
Collapse
|
25
|
Thiazole orange – Spermine conjugate: A potent human telomerase inhibitor comparable to BRACO-19. Eur J Med Chem 2019; 175:20-33. [DOI: 10.1016/j.ejmech.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 11/17/2022]
|
26
|
Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS. G-Quadruplexes as An Alternative Recognition Element in Disease-Related Target Sensing. Molecules 2019; 24:E1079. [PMID: 30893817 PMCID: PMC6471233 DOI: 10.3390/molecules24061079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Jörn Glökler
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
27
|
Small Molecule Fluorescent Probes for G- Quadruplex Visualization as Potential Cancer Theranostic Agents. Molecules 2019; 24:molecules24040752. [PMID: 30791494 PMCID: PMC6412342 DOI: 10.3390/molecules24040752] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 11/25/2022] Open
Abstract
G-quadruplexes have gained prominence over the past two decades for their role in gene regulation, control of anti-tumour activity and ageing. The physiological relevance and significance of these non-canonical structures in the context of cancer has been reviewed several times. Putative roles of G-quadruplexes in cancer prognosis and pathogenesis have spurred the search for small molecule ligands that are capable of binding and modulating the effect of such structures. On a related theme, small molecule fluorescent probes have emerged that are capable of selective recognition of G-quadruplex structures. These have opened up the possibility of direct visualization and tracking of such structures. In this review we outline recent developments on G-quadruplex specific small molecule fluorescent probes for visualizing G-quadruplexes. The molecules represent a variety of structural scaffolds, mechanism of quadruplex-recognition and fluorescence signal transduction. Quadruplex selectivity and in vivo imaging potential of these molecules places them uniquely as quadruplex-theranostic agents in the predominantly cancer therapeutic context of quadruplex-selective ligands.
Collapse
|
28
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Sun N, Du RL, Zheng YY, Guo Q, Cai SY, Liu ZH, Fang ZY, Yuan WC, Liu T, Li XM, Lu YJ, Wong KY. Antibacterial activity of 3-methylbenzo[d]thiazol-methylquinolinium derivatives and study of their action mechanism. J Enzyme Inhib Med Chem 2018; 33:879-889. [PMID: 29722581 PMCID: PMC6010097 DOI: 10.1080/14756366.2018.1465055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.
Collapse
Affiliation(s)
- Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| | - Yuan-Yuan Zheng
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Qi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Sen-Yuan Cai
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Zhi-Hua Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhi-Yuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Wen-Chang Yuan
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiao-Mei Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P.R. China
- Goldenpomelo Biotechnology Co. Ltd, Meizhou514021, P.R. China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
30
|
Zhang F, Li G, Lv FL, Jiang GB, Wang HX, Wang MQ, Li S. A far-red fluorescent probe for selective G-quadruplex DNA targeting. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Xie X, Reznichenko O, Chaput L, Martin P, Teulade-Fichou MP, Granzhan A. Topology-Selective, Fluorescent “Light-Up” Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer. Chemistry 2018; 24:12638-12651. [DOI: 10.1002/chem.201801701] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Oksana Reznichenko
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Ludovic Chaput
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
- CNRS UPR2301; Institut de Chimie des Substances Naturelles (ICSN); 91198 Gif-sur-Yvette France
| | - Pascal Martin
- ITODYS, CNRS UMR7086; Université Paris Diderot; 75205 Paris France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
32
|
Wang MQ, Ren GY, Zhao S, Lian GC, Chen TT, Ci Y, Li HY. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:441-447. [PMID: 29649680 DOI: 10.1016/j.saa.2018.03.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.
Collapse
Affiliation(s)
- Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Gui-Ying Ren
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuang Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Guang-Chang Lian
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting-Ting Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Ci
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hong-Yao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
33
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Konidaris KF, Pilati T, Terraneo G, Politzer P, Murray JS, Scilabra P, Resnati G. Cyanine dyes: synergistic action of hydrogen, halogen and chalcogen bonds allows discrete I42− anions in crystals. NEW J CHEM 2018. [DOI: 10.1039/c8nj00421h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrete tetraiodide dianions (I42−) are formed in crystals via halogen bond coordination of I2 by iodide anions which are pinned in their positions by a network of hydrogen bonds involving a benzoselenazole cyanine dye.
Collapse
Affiliation(s)
- Konstantis F. Konidaris
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
| | - Tullio Pilati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
| | - Giancarlo Terraneo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
| | - Peter Politzer
- Department of Chemistry
- University of New Orleans
- New Orleans
- USA
| | - Jane S. Murray
- Department of Chemistry
- University of New Orleans
- New Orleans
- USA
| | - Patrick Scilabra
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
| |
Collapse
|
35
|
Li D, Hou JQ, Long W, Lu YJ, Wong WL, Zhang K. A study on a telo21 G-quadruplex DNA specific binding ligand: enhancing the molecular recognition ability via the amino group interactions. RSC Adv 2018; 8:20222-20227. [PMID: 35541662 PMCID: PMC9080739 DOI: 10.1039/c8ra03833c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/22/2018] [Accepted: 05/27/2018] [Indexed: 02/02/2023] Open
Abstract
A symmetric ligand is synthesized composed of a core N-methylpyridinium scaffold and two para-substituted benzyl groups through a flexible ethylene bridge to form a novel three-ring-conjugated system. The ligand system was found to have only weak background fluorescent signal in aqueous or physiological conditions and exhibited strong fluorescent signal enhancement targeting at telo21 G-quadruplex structure rather than other types of nucleic acids. The comparison study with two terminal groups (–N(CH3)2versus –SCH3) indicates that the stimulated signal enhancement of specific binding is probably attributed to the hydrogen-bonding interactions through the amino groups in the G-quartets. The docking result illuminates the experimental observation that the ligand system showed only weak fluorescent signals in aqueous or physiological conditions while exhibiting a strong fluorescent signal upon binding to the telo21 G-quadruplex structure (binding energy: −6.2 kcal mol−1). A significant fluorescent signal enhancement attributed to hydrogen-bonding interactions through the amino groups of a small binding ligand in the G-quartets (binding energy: −6.2 kcal mol−1).![]()
Collapse
Affiliation(s)
- Dongli Li
- School of Chemical and Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
- International Healthcare Innovation Institute (Jiangmen)
| | - Jin-Qiang Hou
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Wei Long
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Yu-Jing Lu
- International Healthcare Innovation Institute (Jiangmen)
- Jiangmen 529040
- P. R. China
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
| | - Wing-Leung Wong
- School of Chemical and Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
- International Healthcare Innovation Institute (Jiangmen)
| | - Kun Zhang
- School of Chemical and Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
- International Healthcare Innovation Institute (Jiangmen)
| |
Collapse
|
36
|
Studies on interactions of carbazole derivatives with DNA, cell image, and cytotoxicity. Bioorg Med Chem 2018; 26:285-294. [DOI: 10.1016/j.bmc.2017.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022]
|
37
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
38
|
Papi F, Ferraroni M, Rigo R, Da Ros S, Bazzicalupi C, Sissi C, Gratteri P. Role of the Benzodioxole Group in the Interactions between the Natural Alkaloids Chelerythrine and Coptisine and the Human Telomeric G-Quadruplex DNA. A Multiapproach Investigation. JOURNAL OF NATURAL PRODUCTS 2017; 80:3128-3135. [PMID: 29148767 DOI: 10.1021/acs.jnatprod.7b00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The binding properties toward the human telomeric G-quadruplex of the two natural alkaloids coptisine and chelerythrine were studied using spectroscopic techniques, molecular modeling, and X-ray diffraction analysis. The results were compared with reported data for the parent compounds berberine and sanguinarine. Spectroscopic studies showed modest, but different rearrangements of the DNA-ligand complexes, which can be explained considering particular stereochemical features for these alkaloids, in spite of the similarity of their skeletons. In fact, the presence of a dioxolo moiety rather than the two methoxy functions improves the efficiency of coptisine and sanguinarine in comparison to berberine and chelerythrine, and the overall stability trend is sanguinarine > chelerythrine ≈ coptisine > berberine. Accordingly, the X-ray diffraction analysis confirmed the involvement of the benzodioxolo groups in the coptisine/DNA binding by means of π···π, O···π, and CH···O interactions. Similar information is provided by modeling studies, which, additionally, evidenced reasons for the quadruplex vs double-helix selectivity shown by these alkaloids. Thus, the analyses shed light on the key role of the benzodioxolo moieties in strengthening the interaction with the G4-folded human telomeric sequence and indicated the superior G4 stabilizing properties of the benzophenanthridine scaffold with respect to the protoberberine one and conversely the better G4 vs dsDNA selectivity profile of coptisine over the other alkaloids.
Collapse
Affiliation(s)
- F Papi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - M Ferraroni
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - R Rigo
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - S Da Ros
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - C Bazzicalupi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - C Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - P Gratteri
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
39
|
|
40
|
Grande V, Doria F, Freccero M, Würthner F. An Aggregating Amphiphilic Squaraine: A Light-up Probe That Discriminates Parallel G-Quadruplexes. Angew Chem Int Ed Engl 2017; 56:7520-7524. [DOI: 10.1002/anie.201702096] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Filippo Doria
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Mauro Freccero
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
41
|
Grande V, Doria F, Freccero M, Würthner F. An Aggregating Amphiphilic Squaraine: A Light-up Probe That Discriminates Parallel G-Quadruplexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| | - Filippo Doria
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Mauro Freccero
- Università di Pavia; Dipartimento di Chimica; Viale Taramelli 10 27100 Pavia Italy
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie & Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
42
|
Wachter E, Moyá D, Glazer EC. Combining a Ru(II) "Building Block" and Rapid Screening Approach to Identify DNA Structure-Selective "Light Switch" Compounds. ACS COMBINATORIAL SCIENCE 2017; 19:85-95. [PMID: 28029775 DOI: 10.1021/acscombsci.6b00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chemically reactive Ru(II) "building block", able to undergo condensation reactions with substituted diamines, was utilized to create a small library of luminescent "light switch" dipyrido-[3,2-a:2',3'-c] phenazine (dppz) complexes. The impact of substituent identity, position, and the number of substituents on the light switch effect was investigated. An unbiased, parallel screening approach was used to evaluate the selectivity of the compounds for a variety of different biomolecules, including protein, nucleosides, single stranded DNA, duplex DNA, triplex DNA, and G-quadruplex DNA. Combining these two approaches allowed for the identification of hit molecules that showed different selectivities for biologically relevant DNA structures, particularly triplex and quadruplex DNA.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| |
Collapse
|
43
|
Wang MQ, Gao LX, Yang YF, Xiong XN, Zheng ZY, Li S, Wu Y, Ma LL. A triphenylamine derivative as a naked-eye and light-up fluorescent probe for G-quadruplex DNA. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Gaur P, Kumar A, Bhattacharyya S, Ghosh S. Biomolecular recognition at the cellular level: geometrical and chemical functionality dependence of a low phototoxic cationic probe for DNA imaging. J Mater Chem B 2016; 4:4895-4900. [DOI: 10.1039/c6tb00787b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Potential application of a biocompatible and low phototoxic cationic stain with semilunar geometry for longer duration visualization of cellular DNA is reported.
Collapse
Affiliation(s)
- Pankaj Gaur
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Ajay Kumar
- Department of Biophysics
- Post Graduate Institute of Medical Education and Research
- Chandigarh-160012
- India
| | - Shalmoli Bhattacharyya
- Department of Biophysics
- Post Graduate Institute of Medical Education and Research
- Chandigarh-160012
- India
| | - Subrata Ghosh
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| |
Collapse
|