1
|
Crone KK, Labonte JW, Elias MH, Freeman MF. α-N-Methyltransferase regiospecificity is mediated by proximal, redundant enzyme-substrate interactions. Protein Sci 2025; 34:e70021. [PMID: 39840790 PMCID: PMC11751858 DOI: 10.1002/pro.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
N-Methylation of the peptide backbone confers pharmacologically beneficial characteristics to peptides that include greater membrane permeability and resistance to proteolytic degradation. The borosin family of ribosomally synthesized and post-translationally modified peptides offer a post-translational route to install amide backbone α-N-methylations. Previous work has elucidated the substrate scope and engineering potential of two examples of type I borosins, which feature autocatalytic precursors that encode N-methyltransferases that methylate their own C-termini in trans. We recently reported the first discrete N-methyltransferase and precursor peptide from Shewanella oneidensis MR-1, a minimally iterative, type IV borosin that allowed the first detailed kinetic analyses of borosin N-methyltransferases. Herein, we characterize the substrate scope and resilient regiospecificity of this discrete N-methyltransferase by comparison of relative rates and methylation patterns of over 40 precursor peptide variants along with structure analyses of nine enzyme-substrate complexes. Sequences critical to methylation are identified and demonstrated in assaying minimal peptide substrates and non-native peptide sequences for assessment of secondary structure requirements and engineering potential. This work grants understanding towards the mechanism of substrate recognition and iterative activity by discrete borosin N-methyltransferases.
Collapse
Affiliation(s)
- Kathryn K. Crone
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | - Jason W. Labonte
- Department of ChemistryNotre Dame of Maryland UniversityBaltimoreMarylandUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology InstituteUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology InstituteUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
2
|
Shi C, Patel VA, Mitchell DA, Zhao H. Enterolyin S, a Polythiazole-containing Hemolytic Peptide from Enterococcus caccae. Chembiochem 2024; 25:e202400212. [PMID: 38648232 PMCID: PMC11186716 DOI: 10.1002/cbic.202400212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The β-hemolytic factor streptolysin S (SLS) is an important linear azol(in)e-containing peptide (LAP) that contributes significantly to the virulence of Streptococcus pyogenes. Despite its discovery 85 years ago, SLS has evaded structural characterizing owing to its notoriously problematic physicochemical properties. Here, we report the discovery and characterization of a structurally analogous hemolytic peptide from Enterococcus caccae, termed enterolysin S (ELS). Through heterologous expression, site-directed mutagenesis, chemoselective modification, and high-resolution mass spectrometry, we found that ELS contains an intriguing contiguous octathiazole moiety. The discovery of ELS expands our knowledge of hemolytic LAPs by adding a new member to this virulence-promoting family of modified peptides.
Collapse
Affiliation(s)
- Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Varshal A Patel
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Nguyen NA, Cong Y, Hurrell RC, Arias N, Garg N, Puri AW, Schmidt EW, Agarwal V. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem Biol 2022; 17:1577-1585. [PMID: 35666841 PMCID: PMC9746716 DOI: 10.1021/acschembio.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product-encoding biosynthetic gene clusters (BGCs) within microbial genomes far outnumber the known natural products; chemical products from such BGCs remain cryptic. These silent BGCs hold promise not only for the elaboration of new natural products but also for the discovery of useful biosynthetic enzymes. Here, we describe a genome mining strategy targeted toward the discovery of substrate promiscuous natural product biosynthetic enzymes. In the genome of the methanotrophic bacterium Methylovulum psychrotolerans Sph1T, we discover a transcriptionally silent natural product BGC that encoded numerous ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These cryptic RiPP natural products were accessed using heterologous expression of the substrate peptide and biosynthetic enzyme-encoded genes. In line with our genome mining strategy, the RiPP biosynthetic enzymes in this BGC were found to be substrate promiscuous, which allowed us to use them in a combinatorial fashion with a similarly substrate-tolerant cyanobactin biosynthetic enzyme to introduce head-to-tail macrocyclization in the proteusin family of RiPP natural products.
Collapse
Affiliation(s)
- Nguyet A. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Rachel C. Hurrell
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Natalie Arias
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332,School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA 30332,correspondence:
| |
Collapse
|
4
|
Nguyen NA, Lin Z, Mohanty I, Garg N, Schmidt EW, Agarwal V. An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. J Am Chem Soc 2021; 143:10221-10231. [PMID: 34213321 DOI: 10.1021/jacs.1c03474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Marine sponges are prolific sources of bioactive natural products, several of which are produced by bacteria symbiotically associated with the sponge host. Bacteria-derived natural products, and the specialized bacterial symbionts that synthesize them, are not shared among phylogenetically distant sponge hosts. This is in contrast to nonsymbiotic culturable bacteria in which the conservation of natural products and natural product biosynthetic gene clusters (BGCs) is well established. Here, we demonstrate the widespread conservation of a BGC encoding a cryptic ribosomally synthesized and post-translationally modified peptide (RiPP) in microbiomes of phylogenetically and geographically dispersed sponges from the Pacific and Atlantic oceans. Detection of this BGC was enabled by mining for halogenating enzymes in sponge metagenomes, which, in turn, allowed for the description of a broad-spectrum regiospecific peptidyl tryptophan-6-brominase which possessed no chlorination activity. In addition, we demonstrate the cyclodehydrative installation of azoline heterocycles in proteusin RiPPs. This is the first demonstration of halogenation and cyclodehydration for proteusin RiPPs and the enzymes catalyzing these transformations were found to competently interact with other previously described proteusin substrate peptides. Within a sponge microbiome, many different generalized bacterial taxa harbored this BGC with often more than 50 copies of the BGC detected in individual sponge metagenomes. Moreover, the BGC was found in all sponges queried that possess high diversity microbiomes but it was not detected in other marine invertebrate microbiomes. These data shed light on conservation of cryptic natural product biosynthetic potential in marine sponges that was not detected by traditional natural product-to-BGC (meta)genome mining.
Collapse
Affiliation(s)
- Nguyet A Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Dahiya S, Dahiya R. A comprehensive review of chemistry and pharmacological aspects of natural cyanobacterial azoline-based circular and linear oligopeptides. Eur J Med Chem 2021; 218:113406. [PMID: 33823395 DOI: 10.1016/j.ejmech.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
The cyanobacterial oligopeptides are recognized for being highly selective, efficacious and relatively safer compounds with diverse bioactivities. Azoline-based natural compounds consist of heterocycles which are reduced analogues of five-membered heterocyclic azoles. Among other varieties of azoline-based natural compounds, the heteropeptides bearing oxazoline or thiazoline heterocycles possess intrinsic structural properties with captivating pharmacological profiles, representing excellent templates for the design of novel therapeutics. The specificity of heteropeptides has been translated into prominent safety, tolerability, and efficacy profiles in humans. These peptidic congeners serve as ideal intermediary between small molecules and biopharmaceuticals based on their typically low production complexity compared to the protein-based biopharmaceuticals. The distinct bioproperties and unique structures render these heteropeptides one of the most promising lead compounds for drug discovery. The high degree of chemical diversity in cyanobacterial secondary metabolites may constitute a prolific source of new entities leading to the development of new pharmaceuticals. This review focuses on the azoline-based natural oligopeptides with emphasis on distinctive structural features, stereochemical aspects, biological activities, structure activity relationship, synthetic and biosynthetic aspects as well as mode of action of cyanobacteria-derived peptides.
Collapse
Affiliation(s)
- Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies.
| |
Collapse
|
6
|
Tsutsumi H, Kuroda T, Kimura H, Goto Y, Suga H. Posttranslational chemical installation of azoles into translated peptides. Nat Commun 2021; 12:696. [PMID: 33514734 PMCID: PMC7846737 DOI: 10.1038/s41467-021-20992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Azoles are five-membered heterocycles often found in the backbones of peptidic natural products and synthetic peptidomimetics. Here, we report a method of ribosomal synthesis of azole-containing peptides involving specific ribosomal incorporation of a bromovinylglycine derivative into the nascent peptide chain and its chemoselective conversion to a unique azole structure. The chemoselective conversion was achieved by posttranslational dehydrobromination of the bromovinyl group and isomerization in aqueous media under fairly mild conditions. This method enables us to install exotic azole groups, oxazole and thiazole, at designated positions in the peptide chain with both linear and macrocyclic scaffolds and thereby expand the repertoire of building blocks in the mRNA-templated synthesis of designer peptides. Azoles are five-membered heterocycles found in peptidic natural products and synthetic peptiodomimetics. Here the authors demonstrate a posttranslational chemical modification method for in vitro ribosomal synthesis of peptides with exotic azole groups at specific positions.
Collapse
Affiliation(s)
- Haruka Tsutsumi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomohiro Kuroda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
7
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
8
|
Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol 2020; 105:93-104. [PMID: 33215256 DOI: 10.1007/s00253-020-11016-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Linear azole-containing peptides are a class of ribosomally synthesized and post-translationally modified peptides. We performed a chemical investigation on marine actinomycetes, and new linear azole-containing peptides named spongiicolazolicins A and B were found in the MeOH extracts of a newly isolated strain Streptomyces sp. CWH03 (NBRC 114659) and two strains of S. spongiicola (strain HNM0071T: DSM 103383T and strain 531S: NBRC 113560). The strain Streptomyces sp. CWH03 was indicated to be a new species closely related to S. spongiicola by phylogenetic analysis using the genome sequence. The new peptides named spongiicolazolicins A and B were isolated from the cell of Streptomyces sp. CWH03. The partial structure of spongiicolazolicin A was determined by 2D NMR experiments. Based on data of MS/MS experiments, the chemical structures of spongiicolazolicins A and B were proposed using the amino acid sequence deduced from the precursor-encoding gene, which was found from whole-genome sequence data of Streptomyces sp. CWH03. The biosynthetic gene cluster of spongiicolazolicins was proposed based on comparative analysis with that of a known linear azole peptide goadsporin. KEY POINTS: • Streptomyces sp. CWH03 was a new species isolated from marine sediment. • New linear azole-containing peptides named spongiicolazolicins A and B were isolated. • Biosynthetic pathway of spongiicolazolicins was proposed.
Collapse
|
9
|
Liu R, Yu D, Deng Z, Liu T. Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Curr Opin Biotechnol 2020; 69:1-9. [PMID: 33027693 DOI: 10.1016/j.copbio.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Well-known issues amid in vivo research of natural product discovery and overproduction, such as unculturable or unmanipulable microorganisms, labor-intensive experimental cycles, and hidden rate-limiting steps, have hampered relevant investigations. To overcome these long-standing challenges, many researchers are turning toward in vitro platforms, which bypass the complicated cellular machinery and simplify the study of natural products. Here, we summarize the in vitro driven rational engineering and mining (iDREAM) strategy, which harnesses the flexibility and controllability of in vitro systems to rationally overproduce commodity chemicals and efficiently mine novel compounds. The iDREAM strategy promises to make further significant contributions toward both fundamental advances and industrial practices.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Dingchen Yu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China.
| |
Collapse
|
10
|
Takuma M, Kuroha M, Nagano Y, Kaweewan I, Hemmi H, Oyoshi T, Kodani S. Heterologous production of coryneazolicin in Escherichia coli. J Antibiot (Tokyo) 2019; 72:800-806. [PMID: 31366953 DOI: 10.1038/s41429-019-0212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Coryneazolicin is a plantazolicin family peptide, belonging to linear azole-containing peptides (LAPs). Although coryneazolicin was previously synthesized by in vitro experiments, its biological activity has not been evaluated. In this report, the heterologous production of coryneazolicin was accomplished to obtain enough coryneazolicin for biological activity tests. The structure of coryneazolicin was confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although antibacterial activity of plantazolicin was previously reported, cytotoxicity was newly found in coryneazolicin among plantazolicin type peptides. In addition, we revealed that coryneazolicin induced apoptosis on HCT116 and HOS cancer cell lines.
Collapse
Affiliation(s)
- Momoko Takuma
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mai Kuroha
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Nagano
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hikaru Hemmi
- Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Takanori Oyoshi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
11
|
Ghilarov D, Stevenson CEM, Travin DY, Piskunova J, Serebryakova M, Maxwell A, Lawson DM, Severinov K. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison. Mol Cell 2019; 73:749-762.e5. [PMID: 30661981 PMCID: PMC6395948 DOI: 10.1016/j.molcel.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products. Azole synthetase McbBCD is co-crystallized with its product, microcin B17 Crystal structure of McbBCD reveals an octameric assembly of B4C2D2 Two McbB subunits within each asymmetric unit interact to recognize a peptide Formation of each azole ring requires shuttling of peptide between two active centers
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | | | - Dmitrii Y Travin
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Julia Piskunova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK.
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
DiCaprio AJ, Firouzbakht A, Hudson GA, Mitchell DA. Enzymatic Reconstitution and Biosynthetic Investigation of the Lasso Peptide Fusilassin. J Am Chem Soc 2018; 141:290-297. [PMID: 30589265 DOI: 10.1021/jacs.8b09928] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified natural product which possess a unique lariat knot conformation. The low entropy "threaded" conformation endows lasso peptides with considerable resistance to heat and proteolytic degradation, which are attractive properties for the development of peptide-based therapeutics. Despite their discovery nearly 30 years ago, the molecular mechanism underlying lasso peptide biosynthesis remains poorly characterized due to the low stability of the purified biosynthetic enzymes. Here, we report the biosynthetic reconstitution of a lasso peptide derived from Thermobifida fusca, termed fusilassin. Beyond robust catalytic activity, the fusilassin enzymes demonstrate extraordinary substrate tolerance during heterologous expression in E. coli and upon purification in cell-free biosynthetic reconstitution reactions. We provide evidence that the fusilassin biosynthetic enzymes are not capable of forming branched-cyclic products but can produce entirely unrelated lasso peptides. Finally, we leveraged our bioinformatic survey of all lasso peptides identified in GenBank to perform coevolutionary analysis of two requisite biosynthetic proteins. This effort correctly identified residues governing an important protein-protein interaction, illustrating how genomic insight can accelerate the characterization of natural product biosynthetic pathways. The fusilassin enzymes described within represent a model system for both designing future lasso peptides of biomedical importance and also for elucidating the molecular mechanisms that govern lasso peptide biosynthesis.
Collapse
Affiliation(s)
- Adam J DiCaprio
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Arash Firouzbakht
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Graham A Hudson
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Douglas A Mitchell
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|
13
|
Goto Y, Suga H. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures. Curr Opin Chem Biol 2018; 46:82-90. [DOI: 10.1016/j.cbpa.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/15/2022]
|
14
|
Hudson GA, Mitchell DA. RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 2018; 45:61-69. [PMID: 29533845 PMCID: PMC6131089 DOI: 10.1016/j.mib.2018.02.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 01/14/2023]
Abstract
The threat of antibiotic resistant bacterial infections continues to underscore the need for new treatment options. Historically, small molecule metabolites from microbes have provided a rich source of antibiotic compounds, and as a result, significant effort has been invested in engineering the responsible biosynthetic pathways to generate novel analogs with attractive pharmacological properties. Unfortunately, biosynthetic stringency has limited the capacity of non-ribosomal peptide synthetases and polyketide synthases from producing substantially different analogs in large numbers. Another class of natural products, the ribosomally synthesized and post-translationally modified peptides (RiPPs), have rapidly expanded in recent years with many natively displaying potent antibiotic activity. RiPP biosynthetic pathways are modular and intrinsically tolerant to alternative substrates. Several prominent RiPPs with antibiotic activity will be covered in this review with a focus on their biosynthetic plasticity. While only a few RiPP enzymes have been thoroughly investigated mechanistically, this knowledge has already been harnessed to generate new-to-nature compounds. Through the use of synthetic biology approaches, on-going efforts in RiPP engineering hold great promise in unlocking the potential of this natural product class.
Collapse
Affiliation(s)
- Graham A Hudson
- Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Microbiology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
15
|
Travin DY, Metelev M, Serebryakova M, Komarova ES, Osterman IA, Ghilarov D, Severinov K. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme. J Am Chem Soc 2018; 140:5625-5633. [PMID: 29601195 DOI: 10.1021/jacs.8b02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Mikhail Metelev
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Marina Serebryakova
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Translational Biomedicine , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia.,Waksman Institute for Microbiology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
16
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
17
|
Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun 2017; 8:14207. [PMID: 28165449 PMCID: PMC5303826 DOI: 10.1038/ncomms14207] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Goadsporin (GS) is a member of ribosomally synthesized and post-translationally modified peptides (RiPPs), containing an N-terminal acetyl moiety, six azoles and two dehydroalanines in the peptidic main chain. Although the enzymes involved in GS biosynthesis have been defined, the principle of how the respective enzymes control the specific modifications remains elusive. Here we report a one-pot synthesis of GS using the enzymes reconstituted in the 'flexible' in vitro translation system, referred to as the FIT-GS system. This system allows us to readily prepare not only the precursor peptide from its synthetic DNA template but also 52 mutants, enabling us to dissect the modification determinants of GodA for each enzyme. The in vitro knowledge has also led us to successfully produce designer GS analogues in vivo. The methodology demonstrated in this work is also applicable to other RiPP biosynthesis, allowing us to rapidly investigate the principle of modification events with great ease.
Collapse
|