1
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson MJ, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses. Cell Rep 2023; 42:113553. [PMID: 38096052 PMCID: PMC10801708 DOI: 10.1016/j.celrep.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The receptor-binding domain (RBD) of influenza virus hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies. Here, we evaluate the ability of several immunofocusing techniques to enhance the functional breadth of vaccine-elicited immune responses against the HA RBD. We present a series of "trihead" nanoparticle immunogens that display native-like closed trimeric RBDs from the HAs of several H1N1 influenza viruses. The series includes hyperglycosylated and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the receptor-binding site periphery. Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicit higher hemagglutination inhibition (HAI) and neutralizing activity than the corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation. By contrast, mosaic nanoparticle display and antigen hypervariation do not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Our results yield important insights into antibody responses against the RBD and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson M, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin head elicits cross-neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541996. [PMID: 37292967 PMCID: PMC10245820 DOI: 10.1101/2023.05.23.541996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The head domain of influenza hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies during infection and vaccination. Here we evaluated a series of immunogens that combined several immunofocusing techniques for their ability to enhance the functional breadth of vaccine-elicited immune responses. We designed a series of "trihead" nanoparticle immunogens that display native-like closed trimeric heads from the HAs of several H1N1 influenza viruses, including hyperglycosylated variants and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the periphery of the receptor binding site (RBS). Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicited higher HAI and neutralizing activity against vaccine-matched and -mismatched H1 viruses than corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation, indicating that both of these engineering strategies contributed to improved immunogenicity. By contrast, mosaic nanoparticle display and antigen hypervariation did not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Serum competition assays and electron microscopy polyclonal epitope mapping revealed that the trihead immunogens, especially when hyperglycosylated, elicited a high proportion of antibodies targeting the RBS, as well as cross-reactive antibodies targeting a conserved epitope on the side of the head. Our results yield important insights into antibody responses against the HA head and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N. Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
El-Baba T, Lutomski CA, Burnap SA, Bolla JR, Baker LA, Baldwin AJ, Struwe WB, Robinson CV. Uncovering the Role of N-Glycan Occupancy on the Cooperative Assembly of Spike and Angiotensin Converting Enzyme 2 Complexes: Insights from Glycoengineering and Native Mass Spectrometry. J Am Chem Soc 2023; 145:8021-8032. [PMID: 37000485 PMCID: PMC10103161 DOI: 10.1021/jacs.3c00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Interactions between the SARS-CoV-2 Spike protein and ACE2 are one of the most scrutinized reactions of our time. Yet, questions remain as to the impact of glycans on mediating ACE2 dimerization and downstream interactions with Spike. Here, we address these unanswered questions by combining a glycoengineering strategy with high-resolution native mass spectrometry (MS) to investigate the impact of N-glycan occupancy on the assembly of multiple Spike-ACE2 complexes. We confirmed that intact Spike trimers have all 66 N-linked sites occupied. For monomeric ACE2, all seven N-linked glycan sites are occupied to various degrees; six sites have >90% occupancy, while the seventh site (Asn690) is only partially occupied (∼30%). By resolving the glycoforms on ACE2, we deciphered the influence of each N-glycan on ACE2 dimerization. Unexpectedly, we found that Asn432 plays a role in mediating dimerization, a result confirmed by site-directed mutagenesis. We also found that glycosylated dimeric ACE2 and Spike trimers form complexes with multiple stoichiometries (Spike-ACE2 and Spike2-ACE2) with dissociation constants (Kds) of ∼500 and <100 nM, respectively. Comparing these values indicates that positive cooperativity may drive ACE2 dimers to complex with multiple Spike trimers. Overall, our results show that occupancy has a key regulatory role in mediating interactions between ACE2 dimers and Spike trimers. More generally, since soluble ACE2 (sACE2) retains an intact SARS-CoV-2 interaction site, the importance of glycosylation in ACE2 dimerization and the propensity for Spike and ACE2 to assemble into higher oligomers are molecular details important for developing strategies for neutralizing the virus.
Collapse
Affiliation(s)
- Tarick
J. El-Baba
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Sean A. Burnap
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Lindsay A. Baker
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Andrew J. Baldwin
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
4
|
Bechtella L, Pagel K. A butterfly effect: From a single nucleotide to altered immunity. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Sun J, Zhao G, Bylund T, Lee M, Adibhatla S, Kwong PD, Chuang GY, Rawi R, Bewley CA. C3-Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity. ACS Chem Biol 2022; 17:1450-1459. [PMID: 35537058 PMCID: PMC10091857 DOI: 10.1021/acschembio.1c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.
Collapse
Affiliation(s)
- Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Srikar Adibhatla
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
7
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends Microbiol 2022; 30:866-881. [DOI: 10.1016/j.tim.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
|
9
|
Yin V, Lai SH, Caniels TG, Brouwer PJM, Brinkkemper M, Aldon Y, Liu H, Yuan M, Wilson IA, Sanders RW, van Gils MJ, Heck AJR. Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS CENTRAL SCIENCE 2021; 7:1863-1873. [PMID: 34845440 PMCID: PMC8577368 DOI: 10.1021/acscentsci.1c00804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Determining how antibodies interact with the spike (S) protein of the SARS-CoV-2 virus is critical for combating COVID-19. Structural studies typically employ simplified, truncated constructs that may not fully recapitulate the behavior of the original complexes. Here, we combine two single particle mass analysis techniques (mass photometry and charge-detection mass spectrometry) to enable the measurement of full IgG binding to the trimeric SARS-CoV-2 S ectodomain. Our experiments reveal that antibodies targeting the S-trimer typically prefer stoichiometries lower than the symmetry-predicted 3:1 binding. We determine that this behavior arises from the interplay of steric clashes and avidity effects that are not reflected in common antibody constructs (i.e., Fabs). Surprisingly, these substoichiometric complexes are fully effective at blocking ACE2 binding despite containing free receptor binding sites. Our results highlight the importance of studying antibody/antigen interactions using complete, multimeric constructs and showcase the utility of single particle mass analyses in unraveling these complex interactions.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tom G. Caniels
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Philip J. M. Brouwer
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mitch Brinkkemper
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Yoann Aldon
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hejun Liu
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Meng Yuan
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Rogier W. Sanders
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
College of Cornell University, 1300 York Avenue, New York, New York 10065, United
States
| | - Marit J. van Gils
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of
Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Zhang Y, Zheng S, Zhao W, Mao Y, Cao W, Zeng W, Liu Y, Hu L, Gong M, Cheng J, Chen Y, Yang H. Sequential Analysis of the N/O-Glycosylation of Heavily Glycosylated HIV-1 gp120 Using EThcD-sceHCD-MS/MS. Front Immunol 2021; 12:755568. [PMID: 34745128 PMCID: PMC8567067 DOI: 10.3389/fimmu.2021.755568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host’s immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.
Collapse
Affiliation(s)
- Yong Zhang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yueqiu Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Eldrid CS, Allen JD, Newby ML, Crispin M. Suppression of O-Linked Glycosylation of the SARS-CoV-2 Spike by Quaternary Structural Restraints. Anal Chem 2021; 93:14392-14400. [PMID: 34670086 PMCID: PMC8547167 DOI: 10.1021/acs.analchem.1c01772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/08/2023]
Abstract
Understanding the glycosylation of the envelope spike (S) protein of SARS-CoV-2 is important in defining the antigenic surface of this key viral target. However, the underlying protein architecture may significantly influence glycan occupancy and processing. There is, therefore, potential for different recombinant fragments of S protein to display divergent glycosylation. Here, we show that the receptor binding domain (RBD), when expressed as a monomer, exhibits O-linked glycosylation, which is not recapitulated in the native-like soluble trimeric protein. We unambiguously assign O-linked glycosylation by homogenizing N-linked glycosylation using the enzymatic inhibitor, kifunensine, and then analyzing the resulting structures by electron-transfer higher-energy collision dissociation (EThcD) in an Orbitrap Eclipse Tribrid instrument. In the native-like trimer, we observe a single unambiguous O-linked glycan at T323, which displays very low occupancy. In contrast, several sites of O-linked glycosylation can be identified when RBD is expressed as a monomer, with T323 being almost completely occupied. We ascribe this effect to the relaxation of steric restraints arising from quaternary protein architecture. Our analytical approach has also highlighted that fragmentation ions arising from trace levels of truncated N-linked glycans can be misassigned as proximal putative O-linked glycan structures, particularly where a paucity of diagnostic fragments were obtained. Overall, we show that in matched expression systems the quaternary protein architecture limits O-linked glycosylation of the spike protein.
Collapse
Affiliation(s)
| | | | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
12
|
Wu D, Robinson CV. Connecting ‘multi-omics’ approaches to endogenous protein complexes. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
15
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
16
|
Schneck NA, Ivleva VB, Cai CX, Cooper JW, Lei QP. Characterization of the furin cleavage motif for HIV-1 trimeric envelope glycoprotein by intact LC-MS analysis. Analyst 2020; 145:1636-1640. [PMID: 31932825 PMCID: PMC10246425 DOI: 10.1039/c9an02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Generating a soluble and native-like trimeric envelope glycoprotein (Env) with high efficacy as an immunogen has been a major focus for developing an effective vaccine against HIV-1. The Env immunogen is a heavily glycosylated protein composed of 3 identical surface gp120 and gp41 subunits that form into a trimer of heterodimers (3 × 28 N-glycan sites). During Env immunogen production, endogenous furin works to cleave a hexa-arginine motif connecting the gp120 and gp41 subunits, which is needed to ensure proper protein folding and a native-like conformation of Env. Verification of the overall identity and proteolytic cleavage of Env is therefore important for HIV-1 vaccine development and product quality. Herein, we report the first work using LC-MS to (1) achieve fast and accurate intact mass measurement of Env after deglycosylation and (2) confidently identify the furin cleavage sites.
Collapse
Affiliation(s)
- Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Cindy X Cai
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| |
Collapse
|
17
|
Sharma VK, Sharma I, Glick J. The expanding role of mass spectrometry in the field of vaccine development. MASS SPECTROMETRY REVIEWS 2020; 39:83-104. [PMID: 29852530 PMCID: PMC7027533 DOI: 10.1002/mas.21571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 05/09/2023]
Abstract
Biological mass spectrometry has evolved as a core analytical technology in the last decade mainly because of its unparalleled ability to perform qualitative as well as quantitative profiling of enormously complex biological samples with high mass accuracy, sensitivity, selectivity and specificity. Mass spectrometry-based techniques are also routinely used to assess glycosylation and other post-translational modifications, disulfide bond linkage, and scrambling as well as for the detection of host cell protein contaminants in the field of biopharmaceuticals. The role of mass spectrometry in vaccine development has been very limited but is now expanding as the landscape of global vaccine development is shifting towards the development of recombinant vaccines. In this review, the role of mass spectrometry in vaccine development is presented, some of the ongoing efforts to develop vaccines for diseases with global unmet medical need are discussed and the regulatory challenges of implementing mass spectrometry techniques in a quality control laboratory setting are highlighted.
Collapse
Affiliation(s)
| | - Ity Sharma
- Independent CMC ConsultantParamusNew Jersey
| | - James Glick
- Novartis Institutes for BioMedical ResearchEast HanoverNew Jersey
| |
Collapse
|
18
|
Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. Curr Opin Struct Biol 2019; 58:241-248. [PMID: 31326232 PMCID: PMC7104348 DOI: 10.1016/j.sbi.2019.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most complex and prevalent protein modification that influences attributes ranging from cellular localization and signaling to half-life and proteolysis. Glycoconjugates are fundamental for cellular function and alterations in their structure are often observed in pathological states. Most biotherapeutic proteins are glycosylated, which influences drug safety and efficacy. Therefore, the ability to characterize glycoproteins is important in all areas of biomolecular and medicinal research. Here we discuss recent advances in native mass spectrometry that have significantly improved our ability to characterize heterogeneous glycoproteins and to relate glycan structure to protein function.
Collapse
|
19
|
Wu D, Li J, Struwe WB, Robinson CV. Probing N-glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis. Chem Sci 2019; 10:5146-5155. [PMID: 31183067 PMCID: PMC6524569 DOI: 10.1039/c9sc00360f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
A lectin affinity purification-mass spectrometry approach to characterize lectin-reactive glycoproteoforms and elucidate lectin specificities at the intact protein level.
Lectins are carbohydrate binding proteins that recognize specific epitopes present on target glycoproteins. Changes in lectin-reactive carbohydrate repertoires are related to many biological signaling pathways and recognized as hallmarks of several pathological processes. Consequently, lectins are valuable probes, commonly used for examining glycoprotein structural and functional microheterogeneity. However, the molecular interactions between a given lectin and its preferred glycoproteoforms are largely unknown due to the inherent complexity and limitations of methods used to investigate intact glycoproteins. Here, we apply a lectin-affinity purification procedure coupled with native mass spectrometry to characterize lectin-reactive glycoproteoforms at the intact protein level. We investigate the interactions between the highly fucosylated and highly branched glycoproteoforms of haptoglobin and α1-acid glycoprotein using two different lectins Aleuria aurantia lectin (AAL) and Phaseolus vulgaris leucoagglutinin (PHA-L), respectively. Firstly we show a co-occurrence of fucosylation and N-glycan branching on haptoglobin, particularly among highly fucosylated glycoproteoforms. Secondly, we analyze the global heterogeneity of highly branched glycoproteoforms of haptoglobin and α1-acid glycoprotein and reveal that while multi-fucosylation attenuates the lectin PHA-L binding to haptoglobin, it has no impact on AGP. Taken together, our lectin affinity purification native MS approach elucidates lectin specificities between intact glycoproteins, not achievable by other methods. Moreover, since aberrant glycosylation of Hp and AGP are potential markers for many diseases, including pancreatic, hepatic and ovarian cancers, understanding their interactions with lectins will help the development of carbohydrate-centric monitoring methods to understand their pathophysiological implications.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry , University of Oxford , South Parks Road , OX1 3QZ , Oxford , UK .
| | - Jingwen Li
- Department of Chemistry , University of Oxford , South Parks Road , OX1 3QZ , Oxford , UK .
| | - Weston B Struwe
- Department of Chemistry , University of Oxford , South Parks Road , OX1 3QZ , Oxford , UK .
| | - Carol V Robinson
- Department of Chemistry , University of Oxford , South Parks Road , OX1 3QZ , Oxford , UK .
| |
Collapse
|
20
|
Sun L, Ishihara M, Middleton DR, Tiemeyer M, Avci FY. Metabolic labeling of HIV-1 envelope glycoprotein gp120 to elucidate the effect of gp120 glycosylation on antigen uptake. J Biol Chem 2018; 293:15178-15194. [PMID: 30115684 DOI: 10.1074/jbc.ra118.004798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Indexed: 12/21/2022] Open
Abstract
The glycan shield on the envelope glycoprotein gp120 of HIV-1 has drawn immense attention as a vulnerable site for broadly neutralizing antibodies and for its significant impact on host adaptive immune response to HIV-1. Glycosylation sites and glycan composition/structure at each site on gp120 along with the interactions of gp120 glycan shield with broadly neutralizing antibodies have been extensively studied. However, a method for directly and selectively tracking gp120 glycans has been lacking. Here, we integrate metabolic labeling and click chemistry technology with recombinant gp120 expression to demonstrate that gp120 glycans could be specifically labeled and directly detected. Selective labeling of gp120 by N-azidoacetylmannosamine (ManNAz) and N-azidoacetylgalactosamine (GalNAz) incorporation into the gp120 glycan shield was characterized by MS of tryptic glycopeptides. By using metabolically labeled gp120, we investigated the impact of gp120 glycosylation on its interaction with host cells and demonstrated that oligomannose enrichment and sialic acid deficiency drastically enhanced gp120 uptake by bone marrow-derived dendritic cells. Collectively, our data reveal an effective labeling and detection method for gp120, serving as a tool for functional characterization of the gp120 glycans and potentially other glycosylated proteins.
Collapse
Affiliation(s)
- Lina Sun
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Dustin R Middleton
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Fikri Y Avci
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and .,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
21
|
Abstract
Glycosylation is one of the most common and complex posttranslation modifications that significantly influences protein structure and function. However, linking individual glycan structures to protein interactions remains challenging and typically requires multiple techniques. Here, we establish a mass-spectrometric approach to systematically dissect the microheterogeneity of two important serum proteins, α1-acid glycoprotein and haptoglobin, and relate glycan features to drug and protein-binding interaction kinetics. We found that the degree of N-glycan branching and extent of terminal fucosylation can attenuate or enhance these interactions, providing important insight into drug transport in plasma. Our study demonstrates an approach capable of investigating how protein glycosylation fine-tunes protein–drug interactions at the glycan-specific level and will prove universally useful for studying glycoprotein interactions. Altered glycosylation patterns of plasma proteins are associated with autoimmune disorders and pathogenesis of various cancers. Elucidating glycoprotein microheterogeneity and relating subtle changes in the glycan structural repertoire to changes in protein–protein, or protein–small molecule interactions, remains a significant challenge in glycobiology. Here, we apply mass spectrometry-based approaches to elucidate the global and site-specific microheterogeneity of two plasma proteins: α1-acid glycoprotein (AGP) and haptoglobin (Hp). We then determine the dissociation constants of the anticoagulant warfarin to different AGP glycoforms and reveal how subtle N-glycan differences, namely, increased antennae branching and terminal fucosylation, reduce drug-binding affinity. Conversely, similar analysis of the haptoglobin–hemoglobin (Hp–Hb) complex reveals the contrary effects of fucosylation and N-glycan branching on Hp–Hb interactions. Taken together, our results not only elucidate how glycoprotein microheterogeneity regulates protein–drug/protein interactions but also inform the pharmacokinetics of plasma proteins, many of which are drug targets, and whose glycosylation status changes in various disease states.
Collapse
|
22
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
24
|
Young G, Hundt N, Cole D, Fineberg A, Andrecka J, Tyler A, Olerinyova A, Ansari A, Marklund EG, Collier MP, Chandler SA, Tkachenko O, Allen J, Crispin M, Billington N, Takagi Y, Sellers JR, Eichmann C, Selenko P, Frey L, Riek R, Galpin MR, Struwe WB, Benesch JLP, Kukura P. Quantitative mass imaging of single biological macromolecules. Science 2018; 360:423-427. [PMID: 29700264 DOI: 10.1126/science.aar5839] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time.
Collapse
Affiliation(s)
- Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Nikolas Hundt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joanna Andrecka
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Andrew Tyler
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Anna Olerinyova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Ayla Ansari
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Department of Chemistry Biomedicinskt Centrum, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Miranda P Collier
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Shane A Chandler
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Olga Tkachenko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joel Allen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD 20892, USA
| | - James R Sellers
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD 20892, USA
| | - Cédric Eichmann
- In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Straße 10, 13125 Berlin, Germany
| | - Philipp Selenko
- In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Straße 10, 13125 Berlin, Germany
| | - Lukas Frey
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.,Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
25
|
Watanabe Y, Vasiljevic S, Allen JD, Seabright GE, Duyvesteyn HME, Doores KJ, Crispin M, Struwe WB. Signature of Antibody Domain Exchange by Native Mass Spectrometry and Collision-Induced Unfolding. Anal Chem 2018; 90:7325-7331. [PMID: 29757629 PMCID: PMC6008249 DOI: 10.1021/acs.analchem.8b00573] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of domain-exchanged antibodies offers a route to high-affinity targeting to clustered multivalent epitopes, such as those associated with viral infections and many cancers. One strategy to generate these antibodies is to introduce mutations into target antibodies to drive domain exchange using the only known naturally occurring domain-exchanged anti-HIV (anti-human immunodeficiency virus) IgG1 antibody, 2G12 , as a template. Here, we show that domain exchange can be sensitively monitored by ion-mobility mass spectrometry and gas-phase collision-induced unfolding. Using native 2G12 and a mutated form that disrupts domain exchange such that it has a canonical IgG1 architecture ( 2G12 I19R ), we show that the two forms can be readily distinguished by their unfolding profiles. Importantly, the same signature of domain exchange is observed for both intact antibody and isolated Fab fragments. The development of a mass spectrometric method to detect antibody domain exchange will enable rapid screening and selection of candidate antibodies engineered to exhibit this and other unusual quaternary antibody architectures.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
- Biological Sciences & the Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Roosevelt Drive, OX3 7BN, United Kingdom
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Joel D. Allen
- Biological Sciences & the Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
- Biological Sciences & the Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Roosevelt Drive, OX3 7BN, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, King’s College London, SE1 9RT, United Kingdom
| | - Max Crispin
- Biological Sciences & the Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
26
|
Affiliation(s)
- David J. Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
27
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
28
|
Behrens AJ, Struwe WB, Crispin M. Glycosylation profiling to evaluate glycoprotein immunogens against HIV-1. Expert Rev Proteomics 2017; 14:881-890. [PMID: 28870097 DOI: 10.1080/14789450.2017.1376658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Much of the efforts to develop a vaccine against the human immunodeficiency virus (HIV) have focused on the design of recombinant mimics of the viral attachment glycoprotein (Env). The leading immunogens exhibit native-like antigenic properties and are being investigated for their ability to induce broadly neutralizing antibodies (bNAbs). Understanding the relative abundance of glycans at particular glycosylation sites on these immunogens is important as most bNAbs have evolved to recognize or evade the dense coat of glycans that masks much of the protein surface. Understanding the glycan structures on candidate immunogens enables triaging between native-like conformations and immunogens lacking key structural features as steric constraints limit glycan processing. The sensitivity of the processing state of a particular glycan to its structural environment has led to the need for quantitative glycan profiling and site-specific analysis to probe the structural integrity of immunogens. Areas covered: We review analytical methodologies for HIV immunogen evaluation and discuss how these studies have led to a greater understanding of the structural constraints that control the glycosylation state of the HIV attachment and fusion spike. Expert commentary: Total composition and site-specific glycosylation profiling are emerging as standard methods in the evaluation of Env-based immunogen candidates.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- a Oxford Glycobiology Institute, Department of Biochemistry , University of Oxford , Oxford , UK
| | - Weston B Struwe
- a Oxford Glycobiology Institute, Department of Biochemistry , University of Oxford , Oxford , UK
| | - Max Crispin
- a Oxford Glycobiology Institute, Department of Biochemistry , University of Oxford , Oxford , UK.,b Department of Immunology and Microbial Science , The Scripps Research Institute , La Jolla , CA , USA.,c Centre for Biological Sciences and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
29
|
Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat Commun 2017; 8:14954. [PMID: 28348411 PMCID: PMC5379070 DOI: 10.1038/ncomms14954] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
HIV-1 envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs) and the focus for design of an antibody-based HIV vaccine. The Env trimer is covered by ∼90N-linked glycans, which shield the underlying protein from immune surveillance. bNAbs to HIV develop during infection, with many showing dependence on glycans for binding to Env. The ability to routinely assess the glycan type at each glycosylation site may facilitate design of improved vaccine candidates. Here we present a general mass spectrometry-based proteomics strategy that uses specific endoglycosidases to introduce mass signatures that distinguish peptide glycosites that are unoccupied or occupied by high-mannose/hybrid or complex-type glycans. The method yields >95% sequence coverage for Env, provides semi-quantitative analysis of the glycosylation status at each glycosite. We find that most glycosites in recombinant Env trimers are fully occupied by glycans, varying in the proportion of high-mannose/hybrid and complex-type glycans. The analysis of site-specific glycosylation of HIV Envelope glycoprotein (Env) is challenging as it contains 25–30 glycosylation sites with multiple glycan forms at each site. Here the authors present a generally applicable mass spectrometry-based method for site-specific analysis of protein glycosylation that they apply to the analysis of the HIV-1 Env.
Collapse
|