1
|
Mahmoodi N, Minnow YVT, Harijan RK, Bedard GT, Schramm VL. Cell-Effective Transition-State Analogue of Phenylethanolamine N-Methyltransferase. Biochemistry 2023; 62:2257-2268. [PMID: 37467463 PMCID: PMC10646973 DOI: 10.1021/acs.biochem.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent methylation of norepinephrine to form epinephrine. Epinephrine is implicated in the regulation of blood pressure, respiration, Alzheimer's disease, and post-traumatic stress disorder (PTSD). Transition-state (TS) analogues bind their target enzymes orders of magnitude more tightly than their substrates. A synthetic strategy for first-generation TS analogues of human PNMT (hPNMT) permitted structural analysis of hPNMT and revealed potential for second-generation inhibitors [Mahmoodi, N.; J. Am. Chem. Soc. 2020, 142, 14222-14233]. A second-generation TS analogue inhibitor of PNMT was designed, synthesized, and characterized to yield a Ki value of 1.2 nM. PNMT isothermal titration calorimetry (ITC) measurements of inhibitor 4 indicated a negative cooperative binding mechanism driven by large favorable entropic contributions and smaller enthalpic contributions. Cell-based assays with HEK293T cells expressing PNMT revealed a cell permeable, intracellular PNMT inhibitor with an IC50 value of 81 nM. Structural analysis demonstrated inhibitor 4 filling catalytic site regions to recapitulate both norepinephrine and SAM interactions. Conformation of the second-generation inhibitor in the catalytic site of PNMT improves contacts relative to those from the first-generation inhibitors. Inhibitor 4 demonstrates up to 51,000-fold specificity for PNMT relative to DNA and protein methyltransferases. Inhibitor 4 also exhibits a 12,000-fold specificity for PNMT over the α2-adrenoceptor.
Collapse
Affiliation(s)
- Niusha Mahmoodi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gabriel T Bedard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
3
|
Spatiotemporal Changes in the Gene Expression Spectrum of the β2 Adrenergic Receptor Signaling Pathway in the Lungs of Rhesus Monkeys. Lung 2021; 199:73-82. [PMID: 33512584 PMCID: PMC7870609 DOI: 10.1007/s00408-021-00420-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Objective β2 adrenergic receptor (ADRB2) agonists mainly participate in regulation of airway function through the ADRB2-G protein-adenylyl cyclase (AC) signaling pathway; however, the key genes associated with this pathway and the spatiotemporal changes in the expression spectrum of some of their subtypes remain unclear, resulting in an insufficient theoretical basis for formulating the dose and method of drug administration for neonates. Methods We performed sampling at different developmental time points in rhesus monkeys, including the embryo stage, neonatal stage, and adolescence. The MiSeq platform was used for sequencing of key genes and some of their subtypes in the ADRB2 signaling pathway in lung tissues, and target gene expression was normalized and calculated according to reads per kilobase million. Results At different lung-developmental stages, we observed expression of phenylethanolamine N-methyltransferase (PNMT), ADRB2, AC, AKAP and EPAC subtypes (except AC8, AKAP4/5), and various phosphodiesterase (PDE) subtypes (PDE3, PDE4, PDE7, and PDE8), with persistently high expression of AC6, PDE4B, and AKAP(1/2/8/9/12/13, and EZR) maintained throughout the lung-developmental process, PNMT, ADRB2, AC(4/6), PDE4B, and AKAP(1/2/8/9/12/13, EZR, and MAP2)were highly expressed at the neonatal stage. Conclusion During normal lung development in rhesus monkeys, key genes associated with ADRB2–G protein–AC signaling and some of their subtypes are almost all expressed at the neonatal stage, suggesting that this signaling pathway plays a role in this developmental stage. Additionally, AC6, PDE4B, and AKAP(1/2/8/9/12/13, and EZR) showed persistently high expression during the entire lung-developmental process, which provides a reference for the development and utilization of key gene subtypes in this pathway.
Collapse
|
4
|
Lu J, Bart AG, Wu Q, Criscione KR, McLeish MJ, Scott EE, Grunewald GL. Structure-Based Drug Design of Bisubstrate Inhibitors of Phenylethanolamine N-Methyltransferase Possessing Low Nanomolar Affinity at Both Substrate Binding Domains 1. J Med Chem 2020; 63:13878-13898. [PMID: 33147410 DOI: 10.1021/acs.jmedchem.0c01475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The enzyme phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) catalyzes the final step in the biosynthesis of epinephrine and is a potential drug target, primarily for the control of hypertension. Unfortunately, many potent PNMT inhibitors also possess significant affinity for the a2-adrenoceptor, which complicates the interpretation of their pharmacology. A bisubstrate analogue approach offers the potential for development of highly selective inhibitors of PNMT. This paper documents the design, synthesis, and evaluation of such analogues, several of which were found to possess human PNMT (hPNMT) inhibitory potency <5 nM versus AdoMet. Site-directed mutagenesis studies were consistent with bisubstrate binding. Two of these compounds (19 and 29) were co-crystallized with hPNMT and the resulting structures revealed both compounds bound as predicted, simultaneously occupying both substrate binding domains. This bisubstrate inhibitor approach has resulted in one of the most potent (20) and selective (vs the a2-adrenoceptor) inhibitors of hPNMT yet reported.
Collapse
Affiliation(s)
- Jian Lu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aaron G Bart
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Qian Wu
- Department of Chemistry and Chemical Biology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, United States
| | - Kevin R Criscione
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, United States
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Mahmoodi N, Harijan RK, Schramm VL. Transition-State Analogues of Phenylethanolamine N-Methyltransferase. J Am Chem Soc 2020; 142:14222-14233. [PMID: 32702980 DOI: 10.1021/jacs.0c05446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) is a critical enzyme in catecholamine synthesis. It transfers the methyl group of S-adenosylmethionine (SAM) to catalyze the synthesis of epinephrine from norepinephrine. Epinephrine has been associated with diverse human processes, including the regulation of blood pressure and respiration, as well as neurodegeneration found in Alzheimer's disease. Human PNMT (hPNMT) proceeds through an SN2 transition state (TS) in which the transfer of the methyl group is rate limiting. TS analogue enzyme inhibitors are specific for their target and bind orders of magnitude more tightly than their substrates. Molecules resembling the TS of hPNMT were designed, synthesized, and kinetically characterized. This new inhibitory scaffold was designed to mimic the geometry and electronic properties of the hPNMT TS. Synthetic efforts resulted in a tight-binding inhibitor with a Ki value of 12.0 nM. This is among the first of the TS analogue inhibitors of methyltransferase enzymes to show an affinity in the nanomolar range. Isothermal titration calorimetry (ITC) measurements indicated negative cooperative binding of inhibitor to the dimeric protein, driven by favorable entropic contributions. Structural analysis revealed that inhibitor 3 binds to hPNMT by filling the catalytic binding pockets for the cofactor (SAM) and the substrate (norepinephrine) binding sites.
Collapse
Affiliation(s)
- Niusha Mahmoodi
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York 10461, United States
| |
Collapse
|
6
|
Chen D, Li L, Diaz K, Iyamu ID, Yadav R, Noinaj N, Huang R. Novel Propargyl-Linked Bisubstrate Analogues as Tight-Binding Inhibitors for Nicotinamide N-Methyltransferase. J Med Chem 2019; 62:10783-10797. [PMID: 31724854 PMCID: PMC7296983 DOI: 10.1021/acs.jmedchem.9b01255] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the methyl transfer from the cofactor S-adenosylmethionine to nicotinamide and other pyridine-containing compounds. NNMT is an important regulator for nicotinamide metabolism and methylation potential. Aberrant expression levels of NNMT have been implicated in cancer, metabolic, and neurodegenerative diseases, which makes NNMT a potential therapeutic target. Therefore, potent and selective NNMT inhibitors can serve as valuable tools to investigate the roles of NNMT in its mediated diseases. Here, we applied a rational strategy to design and synthesize the tight-binding bisubstrate inhibitor LL320 through a novel propargyl linker. LL320 demonstrates a Ki value of 1.6 ± 0.3 nM, which is the most potent inhibitor to date. The cocrystal structure of LL320 confirms its interaction with both the substrate and cofactor binding sites on NNMT. Importantly, this is the first example of using the propargyl linker to construct potent methyltransferase inhibitors, which will expand our understanding of the transition state of methyl transfer.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Linjie Li
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Ravi Yadav
- Markey Center for Structural Biology, Department of
Biological Sciences and the Purdue Institute of Inflammation, Immunology and
Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United
States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of
Biological Sciences and the Purdue Institute of Inflammation, Immunology and
Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United
States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular
Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Policarpo RL, Decultot L, May E, Kuzmič P, Carlson S, Huang D, Chu V, Wright BA, Dhakshinamoorthy S, Kannt A, Rani S, Dittakavi S, Panarese JD, Gaudet R, Shair MD. High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J Med Chem 2019; 62:9837-9873. [PMID: 31589440 DOI: 10.1021/acs.jmedchem.9b01238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that methylates nicotinamide (NAM) using cofactor S-adenosylmethionine (SAM). NNMT overexpression has been linked to diabetes, obesity, and various cancers. In this work, structure-based rational design led to the development of potent and selective alkynyl bisubstrate inhibitors of NNMT. The reported nicotinamide-SAM conjugate (named NS1) features an alkyne as a key design element that closely mimics the linear, 180° transition state geometry found in the NNMT-catalyzed SAM → NAM methyl transfer reaction. NS1 was synthesized in 14 steps and found to be a high-affinity, subnanomolar NNMT inhibitor. An X-ray cocrystal structure and SAR study revealed the ability of an alkynyl linker to span the methyl transfer tunnel of NNMT with ideal shape complementarity. The compounds reported in this work represent the most potent and selective NNMT inhibitors reported to date. The rational design principle described herein could potentially be extended to other methyltransferase enzymes.
Collapse
Affiliation(s)
| | | | | | - Petr Kuzmič
- BioKin Ltd. , Watertown , Massachusetts 02472 , United States
| | | | | | | | | | | | - Aimo Kannt
- Sanofi Research and Development , Industriepark Hoechst, H823 , D-65926 Frankfurt am Main , Germany
| | - Shilpa Rani
- Jubilant Biosys Ltd. , Yeshwantpur, Bangalore , 560 022 Karnataka , India
| | | | | | | | | |
Collapse
|
8
|
Lang DE, Morris JS, Rowley M, Torres MA, Maksimovich VA, Facchini PJ, Ng KKS. Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J Biol Chem 2019; 294:14482-14498. [PMID: 31395658 DOI: 10.1074/jbc.ra119.009214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse class of plant-specialized metabolites that have been particularly well-studied in the order Ranunculales. The N-methyltransferases (NMTs) in BIA biosynthesis can be divided into three groups according to substrate specificity and amino acid sequence. Here, we report the first crystal structures of enzyme complexes from the tetrahydroprotoberberine NMT (TNMT) subclass, specifically for GfTNMT from the yellow horned poppy (Glaucium flavum). GfTNMT was co-crystallized with the cofactor S-adenosyl-l-methionine (d min = 1.6 Å), the product S-adenosyl-l-homocysteine (d min = 1.8 Å), or in complex with S-adenosyl-l-homocysteine and (S)-cis-N-methylstylopine (d min = 1.8 Å). These structures reveal for the first time how a mostly hydrophobic L-shaped substrate recognition pocket selects for the (S)-cis configuration of the two central six-membered rings in protoberberine BIA compounds. Mutagenesis studies confirm and functionally define the roles of several highly-conserved residues within and near the GfTNMT-active site. The substrate specificity of TNMT enzymes appears to arise from the arrangement of subgroup-specific stereospecific recognition elements relative to catalytic elements that are more widely-conserved among all BIA NMTs. The binding mode of protoberberine compounds to GfTNMT appears to be similar to coclaurine NMT, with the isoquinoline rings buried deepest in the binding pocket. This binding mode differs from that of pavine NMT, in which the benzyl ring is bound more deeply than the isoquinoline rings. The insights into substrate recognition and catalysis provided here form a sound basis for the rational engineering of NMT enzymes for chemoenzymatic synthesis and metabolic engineering.
Collapse
Affiliation(s)
- Dean E Lang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jeremy S Morris
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Michael Rowley
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miguel A Torres
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Vook A Maksimovich
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
10
|
Firestone RS, Schramm VL. The Transition-State Structure for Human MAT2A from Isotope Effects. J Am Chem Soc 2017; 139:13754-13760. [PMID: 28880543 DOI: 10.1021/jacs.7b05803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human methionine S-adenosyltransferase (MAT2A) catalyzes the formation of S-adenosylmethionine (SAM) from ATP and methionine. Synthetic lethal genetic analysis has identified MAT2A as an anticancer target in tumor cells lacking expression of 5'-methylthioadenosine phosphorylase (MTAP). Approximately 15% of human cancers are MTAP-/-. The remainder can be rendered MTAP- through MTAP inhibitors. We used kinetic isotope effect (KIE), commitment factor (Cf), and binding isotope effect (BIE) measurements combined with quantum mechanical (QM) calculations to solve the transition state structure of human MAT2A. The reaction is characterized by an advanced SN2 transition state. The bond forming from the nucleophilic methionine sulfur to the 5'-C of ATP is 2.03 Å at the transition state (bond order of 0.67). Departure of the leaving group triphosphate of ATP is well advanced and forms a 2.32 Å bond between the 5'-C of ATP and the oxygen of the triphosphate (bond order of 0.23). Interaction of MAT2A with its MAT2B regulatory subunit causes no change in the intrinsic KIEs, indicating the same transition state structure. The transition state for MAT2A is more advanced along the reaction coordinate (more product-like) than that from the near-symmetrical transition state of methionine adenosyltransferase from E. coli.
Collapse
Affiliation(s)
- Ross S Firestone
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York, New York 10461, United States
| |
Collapse
|