1
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Morsby JJ, Smith BD. Advances in Optical Sensors of N-Acetyl-β-d-hexosaminidase ( N-Acetyl-β-d-glucosaminidase). Bioconjug Chem 2022; 33:544-554. [PMID: 35302753 PMCID: PMC9870670 DOI: 10.1021/acs.bioconjchem.2c00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
N-Acetyl-β-d-hexosaminidases (EC 3.2.1.52) are exo-acting glycosyl hydrolases that remove N-acetyl-β-d-glucosamine (Glc-NAc) or N-acetyl-β-d-galactosamine (Gal-NAc) from the nonreducing ends of various biomolecules including oligosaccharides, glycoproteins, and glycolipids. The same enzymes are sometimes called N-acetyl-β-d-glucosaminidases, and this review article employs the shorthand descriptor HEX(NAG) to indicate that the terms HEX or NAG are used interchangeably in the literature. The wide distribution of HEX(NAG) throughout the biosphere and its intracellular location in lysosomes combine to make it an important enzyme in food science, agriculture, cell biology, medical diagnostics, and chemotherapy. For more than 50 years, researchers have employed chromogenic derivatives of N-acetyl-β-d-glucosaminide in basic assays for biomedical research and clinical chemistry. Recent conceptual and synthetic innovations in molecular fluorescence sensors, along with concurrent technical improvements in instrumentation, have produced a growing number of new fluorescent imaging and diagnostics methods. A systematic summary of the recent advances in optical sensors for HEX(NAG) is provided under the following headings: assessing kidney health, detection and treatment of infectious disease, fluorescence imaging of cancer, treatment of lysosomal disorders, and reactive probes for chemical biology. The article concludes with some comments on likely future directions.
Collapse
Affiliation(s)
| | - Bradley D. Smith
- Corresponding Author: Bradley D. Smith - Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
Mannino MP, Hart GW. The Beginner’s Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Front Immunol 2022; 13:828648. [PMID: 35173739 PMCID: PMC8841346 DOI: 10.3389/fimmu.2022.828648] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022] Open
Abstract
The addition of N-acetyl glucosamine (GlcNAc) on the hydroxy group of serine/threonine residues is known as O-GlcNAcylation (OGN). The dynamic cycling of this monosaccharide on and off substrates occurs via O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminase (OGA) respectively. These enzymes are found ubiquitously in eukaryotes and genetic knock outs of the ogt gene has been found to be lethal in embryonic mice. The substrate scope of these enzymes is vast, over 15,000 proteins across 43 species have been identified with O-GlcNAc. OGN has been known to play a key role in several cellular processes such as: transcription, translation, cell signaling, nutrient sensing, immune cell development and various steps of the cell cycle. However, its dysregulation is present in various diseases: cancer, neurodegenerative diseases, diabetes. O-GlcNAc is heavily involved in cross talk with other post-translational modifications (PTM), such as phosphorylation, acetylation, and ubiquitination, by regulating each other’s cycling enzymes or directly competing addition on the same substrate. This crosstalk between PTMs can affect gene expression, protein localization, and protein stability; therefore, regulating a multitude of cell signaling pathways. In this review the roles of OGN will be discussed. The effect O-GlcNAc exerts over protein-protein interactions, the various forms of crosstalk with other PTMs, and its role as a nutrient sensor will be highlighted. A summary of how these O-GlcNAc driven processes effect the immune system will also be included.
Collapse
|
4
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One‐Step Enzymatic Labeling Reveals a Critical Role of O‐GlcNAcylation in Cell‐Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Weijie Qin
- National Center for Protein Sciences Beijing State Key Laboratory of Proteomics, Beijing Proteome Research Center Beijing Institute of Lifeomics Beijing China
| | - Peng George Wang
- School of Medicine Southern University of Science and Technology Shenzhen China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
5
|
Wang J, Dou B, Zheng L, Cao W, Dong P, Chen Y, Zeng X, Wen Y, Pan W, Ma J, Chen J, Li X. The Metabolic Chemical Reporter Ac 46AzGal Could Incorporate Intracellular Protein Modification in the Form of UDP-6AzGlc Mediated by OGT and Enzymes in the Leloir Pathway. Front Chem 2021; 9:708306. [PMID: 34712646 PMCID: PMC8546251 DOI: 10.3389/fchem.2021.708306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Galactose is a naturally occurring monosaccharide used to build complex glycans that has not been targeted for labeling as a metabolic reporter. Here, we characterize the cellular modification of proteins by using Ac46AzGal in a dose- and time-dependent manner. It is noted that a vast majority of this labeling of Ac46AzGal occurs intracellularly in a range of mammalian cells. We also provided evidence that this labeling is dependent on not only the enzymes of OGT responsible for O-GlcNAcylation but also the enzymes of GALT and GALE in the Leloir pathway. Notably, we discover that Ac46AzGal is not the direct substrate of OGT, and the labeling results may attribute to UDP-6AzGlc after epimerization of UDP-6AzGal via GALE. Together, these discoveries support the conclusion that Ac46AzGal as an analogue of galactose could metabolically label intracellular O-glycosylation modification, raising the possibility of characterization with impaired functions of the galactose metabolism in the Leloir pathway under certain conditions, such as galactosemias.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China.,State Key Laboratory of Medicinal Chemical Biology, Haihe Education Park, Nankai University, Tianjin, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Lu Zheng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Peiyu Dong
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Yingyi Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Yinhang Wen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Wenxuan Pan
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One-Step Enzymatic Labeling Reveals a Critical Role of O-GlcNAcylation in Cell-Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021; 60:26128-26135. [PMID: 34590401 DOI: 10.1002/anie.202110053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/26/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous post-translational modification of proteins that is essential for cell function. Perturbation of O-GlcNAcylation leads to altered cell-cycle progression and DNA damage response. However, the underlying mechanisms are poorly understood. Here, we develop a highly sensitive one-step enzymatic strategy for capture and profiling O-GlcNAcylated proteins in cells. Using this strategy, we discover that flap endonuclease 1 (FEN1), an essential enzyme in DNA synthesis, is a novel substrate for O-GlcNAcylation. FEN1 O-GlcNAcylation is dynamically regulated during the cell cycle. O-GlcNAcylation at the serine 352 of FEN1 disrupts its interaction with Proliferating Cell Nuclear Antigen (PCNA) at the replication foci, and leads to altered cell cycle, defects in DNA replication, accumulation of DNA damage, and enhanced sensitivity to DNA damage agents. Thus, our study provides a sensitive method for profiling O-GlcNAcylated proteins, and reveals an unknown mechanism of O-GlcNAcylation in regulating cell cycle progression and DNA damage response.
Collapse
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
8
|
Capota E, Wu H, Kohler JJ. Photocrosslinking O-GlcNAcylated Proteins to Neighboring Biomolecules. Curr Protoc 2021; 1:e201. [PMID: 34288588 DOI: 10.1002/cpz1.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This protocol enables identification of the interaction partners of O-GlcNAcylated proteins. The method involves the introduction of the diazirine photocrosslinker onto the O-GlcNAc modification within living cells. The photocrosslinker is activated by UV light to yield covalent crosslinking between O-GlcNAcylated proteins and neighboring molecules. The binding partners can be further characterized by immunoblot or proteomics mass spectrometry methods. The benefits of using the photocrosslinker include the capacity to trap low-affinity binding interactions and the ability to selectively target the interaction partners of the O-GlcNAcylated form of the protein of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: In-cell production and crosslinking of O-GlcNDAzylated proteins Basic Protocol 2: Immunoblot analysis to assess O-GlcNDAz crosslinking Support Protocol: Detection of UDP-GlcNDAz from cell lysates.
Collapse
Affiliation(s)
- Emanuela Capota
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Xu S, Sun F, Tong M, Wu R. MS-based proteomics for comprehensive investigation of protein O-GlcNAcylation. Mol Omics 2021; 17:186-196. [PMID: 33687411 DOI: 10.1039/d1mo00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein O-GlcNAcylation refers to the covalent binding of a single N-acetylglucosamine (GlcNAc) to the serine or threonine residue. This modification primarily occurs on proteins in the nucleus and the cytosol, and plays critical roles in many cellular events, including regulation of gene expression and signal transduction. Aberrant protein O-GlcNAcylation is directly related to human diseases such as cancers, diabetes and neurodegenerative diseases. In the past decades, considerable progress has been made for global and site-specific analysis of O-GlcNAcylation in complex biological samples using mass spectrometry (MS)-based proteomics. In this review, we summarized previous efforts on comprehensive investigation of protein O-GlcNAcylation by MS. Specifically, the review is focused on methods for enriching and site-specifically mapping O-GlcNAcylated peptides, and applications for quantifying protein O-GlcNAcylation in different biological systems. As O-GlcNAcylation is an important protein modification for cell survival, effective methods are essential for advancing our understanding of glycoprotein functions and cellular events.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
11
|
Ning J, Yang H. O-GlcNAcylation in Hyperglycemic Pregnancies: Impact on Placental Function. Front Endocrinol (Lausanne) 2021; 12:659733. [PMID: 34140929 PMCID: PMC8204080 DOI: 10.3389/fendo.2021.659733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
The dynamic cycling of N-acetylglucosamine, termed as O-GlcNAcylation, is a post-translational modification of proteins and is involved in the regulation of fundamental cellular processes. It is controlled by two essential enzymes, O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation serves as a modulator in placental tissue; furthermore, increased levels of protein O-GlcNAcylation have been observed in women with hyperglycemia during pregnancy, which may affect the short-and long-term development of offspring. In this review, we focus on the impact of O-GlcNAcylation on placental functions in hyperglycemia-associated pregnancies. We discuss the following topics: effect of O-GlcNAcylation on placental development and its association with hyperglycemia; maternal-fetal nutrition transport, particularly glucose transport, via the mammalian target of rapamycin and AMP-activated protein kinase pathways; and the two-sided regulatory effect of O-GlcNAcylation on inflammation. As O-GlcNAcylation in the placental tissues of pregnant women with hyperglycemia influences near- and long-term development of offspring, research in this field has significant therapeutic relevance.
Collapse
Affiliation(s)
- Jie Ning
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
- *Correspondence: Huixia Yang,
| |
Collapse
|
12
|
Escobar EE, King DT, Serrano-Negrón JE, Alteen MG, Vocadlo DJ, Brodbelt JS. Precision Mapping of O-Linked N-Acetylglucosamine Sites in Proteins Using Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2020; 142:11569-11577. [PMID: 32510947 DOI: 10.1021/jacs.0c04710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite its central importance as a regulator of cellular physiology, identification and precise mapping of O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (PTM) sites in proteins by mass spectrometry (MS) remains a considerable technical challenge. This is due in part to cleavage of the glycosidic bond occurring prior to the peptide backbone during collisionally activated dissociation (CAD), which leads to generation of characteristic oxocarbenium ions and impairs glycosite localization. Herein, we leverage CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high-energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact. Upon activation using UV laser pulses, efficient photodissociation of glycopeptides is achieved with production of multiple sequence ions that enable robust and precise localization of O-GlcNAc sites. Application of this method to tryptic peptides originating from O-GlcNAcylated proteins TAB1 and Polyhomeotic confirmed previously reported O-GlcNAc sites in TAB1 (S395 and S396) and uncovered new sites within both proteins. We expect this strategy will complement existing MS/MS methods and be broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dustin T King
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jesús E Serrano-Negrón
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Tavassoly O, Yue J, Vocadlo DJ. Pharmacological inhibition and knockdown of O-GlcNAcase reduces cellular internalization of α-synuclein preformed fibrils. FEBS J 2020; 288:452-470. [PMID: 32365408 DOI: 10.1111/febs.15349] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is Lewy bodies that form within the brain from aggregated forms of α-synuclein (α-syn). These toxic α-syn aggregates are transferred from cell to cell by release of fibrils from dying neurons into the extracellular environment, followed by their subsequent uptake by neighboring cells. This process leads to spreading of the pathology throughout the brain in a prion-like manner. Identifying new pathways that hinder the internalization of such α-syn fibrils is of high interest for their downstream potential exploitation as a way to create disease-modifying therapeutics for PD. Here, we show that Thiamet-G, a highly selective pharmacological agent that inhibits the glycoside hydrolase O-GlcNAcase (OGA), blunts the cellular uptake of α-syn fibrils. This effect correlates with increased nucleocytoplasmic levels of O-linked N-acetylglucosamine (O-GlcNAc)-modified proteins, and genetic knockdown of OGA expression closely phenocopies both these effects. These reductions in the uptake of α-syn fibrils caused by inhibition of OGA are both concentration- and time-dependent and are observed in multiple cell lines including mouse primary cortical neurons. Moreover, treatment of cells with the OGT inhibitor, 5SGlcNHex, increases the level of uptake of α-syn PFFs, further supporting O-GlcNAcylation of proteins driving these effects. Notably, this effect is mediated through an unknown mechanism that does not involve well-characterized endocytotic pathways. These data suggest one mechanism by which OGA inhibitors might exert their protective effects in prion-like neuropathologies and support exploration of OGA inhibitors as a potential disease-modifying approach to treat PD.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Jefferey Yue
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
14
|
Darabedian N, Yang B, Ding R, Cutolo G, Zaro BW, Woo CM, Pratt MR. O-Acetylated Chemical Reporters of Glycosylation Can Display Metabolism-Dependent Background Labeling of Proteins but Are Generally Reliable Tools for the Identification of Glycoproteins. Front Chem 2020; 8:318. [PMID: 32411667 PMCID: PMC7198827 DOI: 10.3389/fchem.2020.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Monosaccharide analogs bearing bioorthogonal functionalities, or metabolic chemical reporters (MCRs) of glycosylation, have been used for approximately two decades for the visualization and identification of different glycoproteins. More recently, proteomics analyses have shown that per-O-acetylated MCRs can directly and chemically react with cysteine residues in lysates and potentially cells, drawing into question the physiological relevance of the labeling. Here, we report robust metabolism-dependent labeling by Ac42AzMan but not the structurally similar Ac44AzGal. However, the levels of background chemical-labeling of cell lysates by both reporters are low and identical. We then characterized Ac42AzMan labeling and found that the vast majority of the labeling occurs on intracellular proteins but that this MCR is not converted to previously characterized reporters of intracellular O-GlcNAc modification. Additionally, we used isotope targeted glycoproteomics (IsoTaG) proteomics to show that essentially all of the Ac42AzMan labeling is on cysteine residues. Given the implications this result has for the identification of intracellular O-GlcNAc modifications using MCRs, we then performed a meta-analysis of the potential O-GlcNAcylated proteins identified by different techniques. We found that many of the proteins identified by MCRs have also been found by other methods. Finally, we randomly selected four proteins that had only been identified as O-GlcNAcylated by MCRs and showed that half of them were indeed modified. Together, these data indicate that the selective metabolism of certain MCRs is responsible for S-glycosylation of proteins in the cytosol and nucleus. However, these results also show that MCRs are still good tools for unbiased identification of glycosylated proteins, as long as complementary methods are employed for confirmation.
Collapse
Affiliation(s)
- Narek Darabedian
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Bo Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Richie Ding
- Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Giuliano Cutolo
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Balyn W Zaro
- Department of Biological Science, University of Southern California, San Francisco, CA, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States.,Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Guo J, Zhang G, Ma J, Zhao C, Xue Q, Wang J, Liu W, Liu K, Wang H, Liu N, Song Q, Li J. Detection and identification of O-GlcNAc-modified proteins using 6-azido-6-deoxy-N-acetyl-galactosamine. Org Biomol Chem 2019; 17:4326-4334. [PMID: 30976765 DOI: 10.1039/c9ob00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An unnatural monosaccharide with a C6-azide, Ac36AzGalNAc, has been developed as a potent and selective probe for O-GlcNAc-modified proteins. Combined with click chemistry, we demonstrate that Ac36AzGalNAc can robustly label O-GlcNAc glycosylation in a wide range of cell lines. Meanwhile, cell imaging and LC-MS/MS proteomics verify its selective activity on O-GlcNAc. More importantly, the protocol presented here provides a general methodology for tracking, capturing and identifying unnatural monosaccharide modified proteins in cells or cell lysates.
Collapse
Affiliation(s)
- Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019. [PMID: 31579312 DOI: 10.1016/jtrac.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
19
|
Hu CW, Worth M, Li H, Jiang J. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Chembiochem 2019; 20:312-318. [PMID: 30199580 PMCID: PMC6433133 DOI: 10.1002/cbic.201800481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 12/11/2022]
Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) modification is an essential component in cell regulation. A single pair of human enzymes conducts this modification dynamically on a broad variety of proteins: O-GlcNAc transferase (OGT) adds the GlcNAc residue and O-GlcNAcase (OGA) hydrolyzes it. This modification is dysregulated in many diseases, but its exact effect on particular substrates remains unclear. In addition, no apparent sequence motif has been found in the modified proteins, and the factors controlling the substrate specificity of OGT and OGA are largely unknown. In this minireview, we will discuss recent developments in chemical and biochemical methods toward addressing the challenge of OGT and OGA substrate recognition. We hope that the new concepts and knowledge from these studies will promote research in this area to advance understanding of O-GlcNAc regulation in health and disease.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Matthew Worth
- Department of Chemistry, University of Wisconsin–Madison, 101 University Avenue, Madison, WI 53706 (USA)
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| |
Collapse
|
20
|
Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front Neurosci 2019; 12:1035. [PMID: 30728759 PMCID: PMC6351787 DOI: 10.3389/fnins.2018.01035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Based on the concept of the tripartite synapse, we have reviewed the role of glucose-derived compounds in glycolytic pathways in astroglial cells. Glucose provides energy and substrate replenishment for brain activity, such as glutamate and lipid synthesis. In addition, glucose metabolism in the astroglial cytoplasm results in products such as lactate, methylglyoxal, and glutathione, which modulate receptors and channels in neurons. Glucose has four potential destinations in neural cells, and it is possible to propose a crossroads in “X” that can be used to describe these four destinations. Glucose-6P can be used either for glycogen synthesis or the pentose phosphate pathway on the left and right arms of the X, respectively. Fructose-6P continues through the glycolysis pathway until pyruvate is formed but can also act as the initial compound in the hexosamine pathway, representing the left and right legs of the X, respectively. We describe each glucose destination and its regulation, indicating the products of these pathways and how they can affect synaptic communication. Extracellular L-lactate, either generated from glucose or from glycogen, binds to HCAR1, a specific receptor that is abundantly localized in perivascular and post-synaptic membranes and regulates synaptic plasticity. Methylglyoxal, a product of a deviation of glycolysis, and its derivative D-lactate are also released by astrocytes and bind to GABAA receptors and HCAR1, respectively. Glutathione, in addition to its antioxidant role, also binds to ionotropic glutamate receptors in the synaptic cleft. Finally, we examined the hexosamine pathway and evaluated the effect of GlcNAc-modification on key proteins that regulate the other glucose destinations.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letícia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larissa D Bobermin
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Zanotto
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina C Leite
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
21
|
Tan HY, Eskandari R, Shen D, Zhu Y, Liu TW, Willems LI, Alteen MG, Madden Z, Vocadlo DJ. Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates. J Am Chem Soc 2018; 140:15300-15308. [PMID: 30296064 DOI: 10.1021/jacs.8b08260] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The modification of proteins with O-linked N-acetylglucosamine ( O-GlcNAc) by the enzyme O-GlcNAc transferase (OGT) has emerged as an important regulator of cellular physiology. Metabolic labeling strategies to monitor O-GlcNAcylation in cells have proven of great value for uncovering the molecular roles of O-GlcNAc. These strategies rely on two-step labeling procedures, which limits the scope of experiments that can be performed. Here, we report on the creation of fluorescent uridine 5'-diphospho- N-acetylglucosamine (UDP-GlcNAc) analogues in which the N-acyl group of glucosamine is modified with a suitable linker and fluorophore. Using human OGT, we show these donor sugar substrates permit direct monitoring of OGT activity on protein substrates in vitro. We show that feeding cells with a corresponding fluorescent metabolic precursor for the last step of the hexosamine biosynthetic pathway (HBP) leads to its metabolic assimilation and labeling of O-GlcNAcylated proteins within live cells. This one-step metabolic feeding strategy permits labeling of O-GlcNAcylated proteins with a fluorescent glucosamine-nitrobenzoxadiazole (GlcN-NBD) conjugate that accumulates in a time- and dose-dependent manner. Because no genetic engineering of cells is required, we anticipate this strategy should be generally amenable to studying the roles of O-GlcNAc in cellular physiology as well as to gain an improved understanding of the regulation of OGT within cells. The further expansion of this one-step in-cell labeling strategy should enable performing a range of experiments including two-color pulse chase experiments and monitoring OGT activity on specific protein substrates in live cells.
Collapse
|
22
|
Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, Bond MR, Morse CL, Gladding RL, Frankland MP, Kant N, Slieker L, Shcherbinin S, Nuthall HN, Zanotti-Fregonara P, Hanover JA, Jesudason C, Pike VW, Innis RB. Evaluation of a PET Radioligand to Image O-GlcNAcase in Brain and Periphery of Rhesus Monkey and Knock-Out Mouse. J Nucl Med 2018; 60:129-134. [PMID: 30213846 DOI: 10.2967/jnumed.118.213231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Accumulation of hyperphosphorylated tau, a microtubule-associated protein, plays an important role in the progression of Alzheimer disease. Animal studies suggest that one strategy for treating Alzheimer disease and related tauopathies may be inhibition of O-GlcNAcase (OGA), which may subsequently decrease pathologic tau phosphorylation. Here, we report the pharmacokinetics of a novel PET radioligand, 18F-LSN3316612, which binds with high affinity and selectivity to OGA. Methods: PET imaging was performed on rhesus monkeys at baseline and after administration of either thiamet-G, a potent OGA inhibitor, or nonradioactive LSN3316612. The density of the enzyme was calculated as distribution volume using a 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. The radiation burden for future studies was based on whole-body imaging of monkeys. Oga ∆Br, a mouse brain-specific knockout of Oga, was also scanned to assess the specificity of the radioligand for its target enzyme. Results: Uptake of radioactivity in monkey brain was high (∼5 SUV) and followed by slow washout. The highest uptake was in the amygdala, followed by striatum and hippocampus. Pretreatment with thiamet-G or nonradioactive LSN3316612 reduced brain uptake to a low and uniform concentration in all regions, corresponding to an approximately 90% decrease in distribution volume. Whole-body imaging of rhesus monkeys showed high uptake in kidney, spleen, liver, and testes. In Oga ∆Br mice, brain uptake of 18F-LSN3316612 was reduced by 82% compared with control mice. Peripheral organs were unaffected in Oga ∆Br mice, consistent with loss of OGA expression exclusively in the brain. The effective dose of 18F-LSN3316612 in humans was calculated to be 22 μSv/MBq, which is typical for 18F-labeled radioligands. Conclusion: These results show that 18F-LSN3316612 is an excellent radioligand for imaging and quantifying OGA in rhesus monkeys and mice. On the basis of these data, 18F-LSN3316612 merits evaluation in humans.
Collapse
Affiliation(s)
- Soumen Paul
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Mohammad B Haskali
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jeih-San Liow
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | | | | | - Michelle R Bond
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L Morse
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Michael P Frankland
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | - John A Hanover
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | | | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O‐Glc
NA
cylation: friend or foe. FEBS J 2018; 285:3152-3167. [DOI: 10.1111/febs.14491] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Saar A. M. Laarse
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| |
Collapse
|
24
|
New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT. J Bioenerg Biomembr 2018; 50:231-240. [PMID: 29671171 DOI: 10.1007/s10863-018-9754-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
O-GlcNAcylation is a dynamic and functionally diverse post-translational modification shown to affect thousands of proteins, including the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Mutations of Nod2 (R702W, G908R and 1007 fs) are associated with Crohn's disease and have lower stabilities compared to wild type. Cycloheximide (CHX)-chase half-life assays have been used to show that O-GlcNAcylation increases the stability and response of both wild type and Crohn's variant Nod2, R702W. A more rapid method to assess stability afforded by post-translational modifications is necessary to fully comprehend the correlation between NLR stability and O-GlcNAcylation. Here, a recently developed cellular thermal shift assay (CETSA) that is typically used to demonstrate protein-ligand binding was adapted to detect shifts in protein stabilization upon increasing O-GlcNAcylation levels in Nod2. This assay was used as a method to predict if other Crohn's associated Nod2 variants were O-GlcNAcylated, and also identified the modification on another NLR, Nod1. Classical immunoprecipitations and NF-κB transcriptional assays were used to confirm the presence and effect of this modification on these proteins. The results presented here demonstrate that CETSA is a convenient method that can be used to detect the stability effect of O-GlcNAcylation on O-GlcNAc-transferase (OGT) client proteins and will be a powerful tool in studying post-translational modification.
Collapse
|
25
|
Hwang H, Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res 2017; 129:295-307. [PMID: 29223644 DOI: 10.1016/j.phrs.2017.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
26
|
Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 2017; 247:481-491. [PMID: 28722313 DOI: 10.1002/dvdy.24553] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program reactivated by tumor cells that leads to the switch from epithelial to mesenchymal phenotype. During EMT, cells are transcriptionally regulated to decrease E-cadherin expression while expressing mesenchymal markers such as vimentin, fibronectin, and N-cadherin. Growing body of evidences suggest that cells engaged in EMT undergo a metabolic reprograming process, redirecting glucose flux toward hexosamine biosynthesis pathway (HBP), which fuels aberrant glycosylation patterns that are extensively observed in cancer cells. HBP depends on nutrient availability to produce its end product UDP-GlcNAc, and for this reason is considered a metabolic sensor pathway. UDP-GlcNAc is the substrate used for the synthesis of major types of glycosylation, including O-GlcNAc and cell surface glycans. In general, the rate limiting enzyme of HBP, GFAT, is overexpressed in many cancer types that present EMT features as well as aberrant glycosylation. Moreover, altered levels of O-GlcNAcylation can modulate cell morphology and favor EMT. In this review, we summarize some of the current knowledge that correlates glucose metabolism, aberrant glycosylation and hyper O-GlcNAcylation supported by HBP that leads to EMT activation. Developmental Dynamics 247:481-491, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Carvalho-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139:153-167. [PMID: 28800454 DOI: 10.1016/j.ejmech.2017.07.070] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative brain disorder in which many biological dysfunctions are involved. Among them, two main types of lesions were discovered and widely studied: the amyloid plaques and the neurofibrillary tangles (NFTs). These two lesions are caused by the dysfunction and the accumulation of two proteins which are, respectively, the beta-amyloid peptide and the tau protein. The process that leads these two proteins to aggregate is complex and is the subject of current studies. After a brief description of the aggregation mechanisms, we will provide an overview of new therapeutic agents targeting the different dysfunctions and toxic species found during aggregation.
Collapse
Affiliation(s)
- Marie Jouanne
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Sylvain Rault
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France
| | - Anne-Sophie Voisin-Chiret
- Université Caen Normandie, France; UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, bd Becquerel, F-14032 Caen, France.
| |
Collapse
|
28
|
Kim EJ. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. Chembiochem 2017; 18:1462-1472. [PMID: 28474822 DOI: 10.1002/cbic.201700138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 12/27/2022]
Abstract
O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are the only enzymes that regulate the dynamics of protein O-GlcNAcylation. Protein O-GlcNAcylation is an important post-translational modification (PTM) of nuclear and cytoplasmic proteins with O-linked β-N-acetyl-glucosamine (O-GlcNAc). O-GlcNAc and its enzymes are involved in a wide variety of cellular processes and are linked to the pathological progression of chronic diseases. Considering their emerging biological significance, systematic and rapid methods to determine the activities of OGT and OGA have become essential, and several chemical/biochemical methods for measuring the activities of these enzymes have been developed. This minireview mainly focuses on the various biochemical assay methods developed to date, while also providing a description of the fundamental principles underlying the monitoring of O-GlcNAc enzyme activities.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, 15, Jilyang, Gyeongsan-si, GyeongBuk, 712-714, Republic of Korea
| |
Collapse
|