1
|
Kaya B, Smith H, Chen Y, Azad MG, M Russell T, Richardson V, Bernhardt PV, Dharmasivam M, Richardson DR. Targeting lysosomes by design: novel N-acridine thiosemicarbazones that enable direct detection of intracellular drug localization and overcome P-glycoprotein (Pgp)-mediated resistance. Chem Sci 2024:d4sc04339a. [PMID: 39165729 PMCID: PMC11331336 DOI: 10.1039/d4sc04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Innovative N-acridine thiosemicarbazones (NATs) were designed along with their iron(iii), copper(ii), and zinc(ii) complexes. Lysosomal targeting was promoted by specifically incorporating the lysosomotropic Pgp substrate, acridine, into the thiosemicarbazone scaffold to maintain the tridentate N, N, S-donor system. The acridine moiety enables a significant advance in thiosemicarbazone design, since: (1) it enables tracking of the drugs by confocal microscopy using its inherent fluorescence; (2) it is lysosomotropic enabling lysosomal targeting; and (3) as acridine is a P-glycoprotein (Pgp) substrate, it facilitates lysosomal targeting, resulting in the drug overcoming Pgp-mediated resistance. These new N-acridine analogues are novel, and this is the first time that acridine has been specifically added to the thiosemicarbazone framework to achieve the three important properties above. These new agents displayed markedly greater anti-proliferative activity against resistant Pgp-expressing cells than very low Pgp-expressing cells. The anti-proliferative activity of NATs against multiple Pgp-positive cancer cell-types (colon, lung, and cervical carcinoma) was abrogated by the third generation Pgp inhibitor, Elacridar, and also Pgp siRNA that down-regulated Pgp. Confocal microscopy demonstrated that low Pgp in KB31 (-Pgp) cells resulted in acridine's proclivity for DNA intercalation promoting NAT nuclear-targeting. In contrast, high Pgp in KBV1 (+Pgp) cells led to NAT lysosomal sequestration, preventing its nuclear localisation. High Pgp expression in KBV1 (+Pgp) cells resulted in co-localization of NATs with the lysosomal marker, LysoTracker™, that was significantly (p < 0.001) greater than the positive control, the di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) Zn(ii) complex, [Zn(DpC)2]. Incorporation of acridine into the thiosemicarbazone scaffold led to Pgp-mediated transport into lysosomes to overcome Pgp-resistance.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine Nagoya 466-8550 Japan
| |
Collapse
|
2
|
Ren Y, Feng L, Tan Z, Zhou F, Liu S. Constructing a novel prognostic model for triple-negative breast cancer based on genes associated with vasculogenic mimicry. Aging (Albany NY) 2024; 16:8086-8109. [PMID: 38728245 PMCID: PMC11132006 DOI: 10.18632/aging.205806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.
Collapse
Affiliation(s)
- Yu Ren
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Luyi Feng
- Information Department of Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhihua Tan
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China
| | - Shu Liu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
4
|
El-Atawy MA, Alsubaie MS, Alazmi ML, Hamed EA, Hanna DH, Ahmed HA, Omar AZ. Synthesis, Characterization, and Anticancer Activity of New N,N'-Diarylthiourea Derivative against Breast Cancer Cells. Molecules 2023; 28:6420. [PMID: 37687250 PMCID: PMC10490226 DOI: 10.3390/molecules28176420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The goal of the current study was to prepare two new homologous series of N,N'-diarylurea and N,N'-diarylthiourea derivatives to investigate the therapeutic effects of these derivatives on the methodologies of inhibition directed on human MCF-7 cancer cells. The molecular structures of the prepared derivatives were successfully revealed through elemental analyses, 1H-NMR, 13C-NMR and FT-IR spectroscopy. The cytotoxic results showed that Diarylthiourea (compound 4) was the most effective in suppressing MCF-7 cell growth when compared to all other prepared derivatives, with the most effective IC50 value (338.33 ± 1.52 µM) after an incubation period of 24 h and no cytotoxic effects on normal human lung cells (wi38 cells). Using the annexin V/PI and comet tests, respectively, treated MCF-7 cells with this IC50 value of the Diarylthiourea 4 compound displayed a considerable increase in early and late apoptotic cells, as well as an intense comet nucleus in comparison to control cells. An arrest of the cell cycle in the S phase was observed via flow cytometry in MCF-7 cells treated with the Diarylthiourea 4 compound, suggesting the onset of apoptosis. Additionally, ELISA research showed that caspase-3 was upregulated in MCF-7 cells treated with compound 4 compared to control cells, suggesting that DNA damage induced by compound 4 may initiate an intrinsic apoptotic pathway and activate caspase-3. These results contributed to recognizing that the successfully prepared Diarylthiourea 4 compound inhibited the proliferation of MCF-7 cancer cells by arresting the S cell cycle and caspase-3 activation via an intrinsic apoptotic route. These results, however, need to be verified through in vivo studies utilizing an animal model.
Collapse
Affiliation(s)
- Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Mohammed L. Alazmi
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| |
Collapse
|
5
|
Strzyga-Łach P, Chrzanowska A, Kiernozek-Kalińska E, Żyżyńska-Granica B, Podsadni K, Podsadni P, Bielenica A. Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells. Arch Pharm (Weinheim) 2023; 356:e2300105. [PMID: 37401845 DOI: 10.1002/ardp.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Katarzyna Podsadni
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
7
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
8
|
Synthesis, structural characterization and in vitro cytotoxicity assessment of new mononuclear Cu(II) and Co(II) complexes against MDA–MB–231, HCC–1806 and HT–29 cancer cell lines. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:molecules28010193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| |
Collapse
|
10
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Vascular mimicry: A potential therapeutic target in breast cancer. Pathol Res Pract 2022; 234:153922. [DOI: 10.1016/j.prp.2022.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
12
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
13
|
Galassi R, Luciani L, Wang J, Vincenzetti S, Cui L, Amici A, Pucciarelli S, Marchini C. Breast Cancer Treatment: The Case of Gold(I)-Based Compounds as a Promising Class of Bioactive Molecules. Biomolecules 2022; 12:biom12010080. [PMID: 35053228 PMCID: PMC8774004 DOI: 10.3390/biom12010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Breast cancers (BCs) may present dramatic diagnoses, both for ineffective therapies and for the limited outcomes in terms of lifespan. For these types of tumors, the search for new drugs is a primary necessity. It is widely recognized that gold compounds are highly active and extremely potent as anticancer agents against many cancer cell lines. The presence of the metal plays an essential role in the activation of the cytotoxicity of these coordination compounds, whose activity, if restricted to the ligands alone, would be non-existent. On the other hand, gold exhibits a complex biochemistry, substantially variable depending on the chemical environments around the central metal. In this review, the scientific findings of the last 6–7 years on two classes of gold(I) compounds, containing phosphane or carbene ligands, are reviewed. In addition to this class of Au(I) compounds, the recent developments in the application of Auranofin in regards to BCs are reported. Auranofin is a triethylphosphine-thiosugar compound that, being a drug approved by the FDA—therefore extensively studied—is an interesting lead gold compound and a good comparison to understand the activities of structurally related Au(I) compounds.
Collapse
Affiliation(s)
- Rossana Galassi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (R.G.); (C.M.)
| | - Lorenzo Luciani
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
- Correspondence: (R.G.); (C.M.)
| |
Collapse
|
14
|
Tka N, Ayed MAH, Braiek MB, Jabli M, Chaaben N, Alimi K, Jopp S, Langer P. 2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties. Beilstein J Org Chem 2021; 17:1629-1640. [PMID: 34354771 PMCID: PMC8290096 DOI: 10.3762/bjoc.17.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Acridine derivatives have attracted considerable interest in numerous areas owing to their attractive physical and chemical properties. Herein, starting from readily available anthranilic acid, an efficient synthesis of 2,4-bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridine derivatives was accomplished via a one-pot double Sonogashira cross-coupling method. The UV-visible absorption and emission properties of the synthesized molecules have been examined. Additionally, theoretical studies based on density functional theory (DFT/B3LYP/6-31G(d)) were carried out.
Collapse
Affiliation(s)
- Najeh Tka
- Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019 Monastir, Tunisia
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Mohamed Adnene Hadj Ayed
- Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019 Monastir, Tunisia
| | - Mourad Ben Braiek
- Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019 Monastir, Tunisia
| | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Noureddine Chaaben
- Université de Monastir, Faculté des Sciences, Unité de recherche sur les Hétéro-Epitaxies et Applications (URHEA), 5000 Monastir, Tunisia
| | - Kamel Alimi
- Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019 Monastir, Tunisia
| | - Stefan Jopp
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
15
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
16
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
17
|
Ravera M, Gabano E, Zanellato I, Rangone B, Perin E, Ferrari B, Bottone MG, Osella D. Cis,cis,trans-[Pt IVCl 2(NH 3) 2(perillato) 2], a dual-action prodrug with excellent cytotoxic and antimetastatic activity. Dalton Trans 2021; 50:3161-3177. [PMID: 33595015 DOI: 10.1039/d0dt04051g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two Pt(iv) conjugates containing one or two molecules of perillic acid (4-isopropenylcyclohexene-1-carboxylic acid), an active metabolite of limonene, were synthesized both with traditional and microwave-assisted methods and characterized. Their antiproliferative activity was tested on a panel of human tumor cell lines. In particular, cis,cis,trans-[PtIVCl2(NH3)2(perillato)2] exhibited excellent antiproliferative and antimetastatic activity on A-549 lung tumor cells at nanomolar concentrations. A number of in vitro biological tests were performed to decipher some aspects of its mechanism of action, including transwell migration and invasion as well as wound healing assay.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang WQ, Wang CX, Liu T, Li ZX, Pan C, Chen YZ, Lian X, Man WL, Ni WX. A cytotoxic nitrido-osmium(VI) complex induces caspase-mediated apoptosis in HepG2 cancer cells. Dalton Trans 2020; 49:17173-17182. [PMID: 33119012 DOI: 10.1039/d0dt02715d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The osmium(vi) nitrido complex [OsVI(N)(sap)(py)Cl] is a potential anti-cancer drug with promising in vitro antiproliferative activities toward a panel of cancer cell lines, including cisplatin-resistant cells (IC50 values of 2.8-13.8 μM). This drug targets DNA and changes its conformation via covalent binding and insertion. In vitro studies indicate that the drug induces HepG2 cells G2/M phase arrest, disrupts the mitochondrial membrane potential and causes caspase-mediated apoptosis. Further in vivo studies using HepG2-bearing nude mice reveal that this drug not only shows good antitumor efficacy of inhibiting tumor growth, but also does not show the side effect of weight loss.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Coordination Complexes/chemical synthesis
- Coordination Complexes/chemistry
- Coordination Complexes/pharmacology
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Hep G2 Cells
- Humans
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Nude
- Models, Molecular
- Molecular Structure
- Nitriles/chemistry
- Nitriles/pharmacology
- Osmium/chemistry
- Osmium/pharmacology
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Khan E, Khan S, Gul Z, Muhammad M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit Rev Anal Chem 2020; 51:812-834. [DOI: 10.1080/10408347.2020.1777523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Zarif Gul
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
20
|
Synthesis, spectral characterization and DFT calculations of novel Ag(I) π-coordination polymeric complexes based on N-allylmorpholine-4-carbothioamide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Synthesis, characterization and anticancer activity in vitro evaluation of novel dicyanoaurate (I)-based complexes. Life Sci 2020; 251:117635. [PMID: 32272179 DOI: 10.1016/j.lfs.2020.117635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/23/2022]
Abstract
Molecular structures containing gold, such as auranofin, have been extensively studied in the diagnosis and treatment of many diseases, including cancer treatment. The pharmacological properties of the newly synthesized unique gold-ligand structures have been reported for different cancer cell lines. However, findings on bishydeten-metal salt complexes with gold are rare. In this work, the synthesis of five novel cyanide-bridged coordination compounds having the closed formulae [Ni(bishydeten)][Au(CN)2]2 (1), [Cu(bishydeten)][Au(CN)2]2 (2), [Zn(bishydeten)2Au3(CN)4][Au2(CN)3] (3), [Cd(bishydeten)0,5]2[Au(CN)2]4.2H2O (4), and [Cd(bishydeten)2][Au(CN)2]2 (5) (where bisyhdeten = N,N-bis(2-hydroxyethyl)ethylene diamine), and their characterization by elemental, infrared, ESI-MS, X-ray (for 2) and thermic measurement methods were performed. Complexes 1 and 3 are thermally more stable than the other three complexes. For these, pharmacological adequacies were also tested. The nucleic acid and protein binding affinities of the Au (I) compounds were also estimated by spectroscopic and electrophoretic techniques. Au (I) complexes were identified as strong chemotherapeutic with mild cytotoxicity, and they demonstrated a dose-dependent inhibition on the growth of cancer cells with IC50 at 0.11 to 0.47 μM. Investigation of mechanisms of action on cells revealed that Au (I) compounds managed to inhibit cell migration and led to a decrease in cytoskeletal proteins such as CK7 and CK20. However, Au (I) compounds failed to inhibit DNA topoisomerase I. Overall, and we suggest that potent antiproliferative activity, mild cytotoxicity, good solubility, and micromolar dosage of Au (I) compounds containing bisyhdeten-metal derivatives render them the potential focus of further studies as chemotherapeutic agents.
Collapse
|
22
|
Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol 2020; 10:220. [PMID: 32175277 PMCID: PMC7056883 DOI: 10.3389/fonc.2020.00220] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells. These channels are lined by tumor cells with cancer stem cell features, positive for periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas; since then, VM has been associated with poor prognosis, tumor aggressiveness, metastasis, and drug resistance in several tumors, including breast cancer. It is proposed that VM and angiogenesis (the de novo formation of blood vessels from the established vasculature by endothelial cells, which is observed in several tumors) rely on some common mechanisms. Furthermore, it is also suggested that VM could constitute a means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to determinant the factors that dictate the onset of VM. In this review, we describe the current understanding of VM formation in breast cancer, including specific signaling pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM in prognosis and new opportunities of VM as a target for breast cancer therapy.
Collapse
Affiliation(s)
- Marco A Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| |
Collapse
|
23
|
Martín-Encinas E, Conejo-Rodríguez V, Miguel JA, Martínez-Ilarduya JM, Rubiales G, Knudsen BR, Palacios F, Alonso C. Novel phosphine sulphide gold(i) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Trans 2020; 49:7852-7861. [DOI: 10.1039/d0dt01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i) increases the cytotoxicity of phosphine sulfide quinolines against cancer cell lines, while heterocycles maintain the TopI inhibitory activity.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | | | - Jesús A. Miguel
- IU CINQUIMA/Química Inorgánica
- Faculty of Science
- University of Valladolid
- Valladolid
- Spain
| | | | - Gloria Rubiales
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO)
- University of Aarhus
- Aarhus
- Denmark
| | - Francisco Palacios
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| | - Concepción Alonso
- Department of Organic Chemistry I
- Faculty of Pharmacy
- University of Basque Country (UPV/EHU)
- Vitoria-Gasteiz
- Spain
| |
Collapse
|
24
|
Favarin LRV, Laranjeira GB, Teixeira CFA, Silva H, Micheletti AC, Pizzuti L, Machulek Júnior A, Caires ARL, Deflon VM, Pesci RBP, Rocha CNL, Correa JR, Pinto LMC, Casagrande GA. Harvesting greenish blue luminescence in gold(i) complexes and their application as promising bioactive molecules and cellular bioimaging agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj01339k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work presents new gold materials as promising antitumoral and antibacterial agents and their potential use as luminescent probes for cellular bioimaging.
Collapse
Affiliation(s)
- Lis R. V. Favarin
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - G. B. Laranjeira
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Cristiane F. A. Teixeira
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Heveline Silva
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - A. C. Micheletti
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Lucas Pizzuti
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Amilcar Machulek Júnior
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Anderson R. L. Caires
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Victor M. Deflon
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Rafaela B. P. Pesci
- Departamento de Química
- Universidade Federal da Paraíba – UFPB
- 58051-900 João Pessoa
- Brazil
| | - C. N. Lima Rocha
- Laboratório de Microscopia e Microanálises, Grupo Quimioterápicos e Sondas Fluorescentes, Instituto de Ciências Biológicas
- Universidade de Brasília
- Brasília
- Brazil
| | - J. R. Correa
- Laboratório de Microscopia e Microanálises, Grupo Quimioterápicos e Sondas Fluorescentes, Instituto de Ciências Biológicas
- Universidade de Brasília
- Brasília
- Brazil
| | - L. M. C. Pinto
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| | - Gleison Antônio Casagrande
- Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química
- Universidade Federal de Mato Grosso do Sul (Laboratório 2)
- Campo Grande
- Brazil
| |
Collapse
|
25
|
Ceramella J, Mariconda A, Iacopetta D, Saturnino C, Barbarossa A, Caruso A, Rosano C, Sinicropi MS, Longo P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg Med Chem Lett 2019; 30:126905. [PMID: 31874823 DOI: 10.1016/j.bmcl.2019.126905] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, 16132 Genova, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
26
|
Ortega E, Zamora A, Basu U, Lippmann P, Rodríguez V, Janiak C, Ott I, Ruiz J. An Erlotinib gold(I) conjugate for combating triple-negative breast cancer. J Inorg Biochem 2019; 203:110910. [PMID: 31683128 DOI: 10.1016/j.jinorgbio.2019.110910] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 12/24/2022]
Abstract
An Erlotinib triphenylphosphane gold(I) conjugate has been prepared from AuCl(PPh3) and its crystal structure has been established by X-ray diffraction, showing a metallo-helicate formation. IC50 values of the new gold conjugate were calculated towards a panel of human tumor cell lines representative of breast (MCF-7, MDA-MB-231) and colon (HT-29) cancer cells. Overall, the gold conjugate exhibited higher cytotoxic activity than that of Erlotinib against the cancer cells studied. Particularly, the antiproliferative effect of the conjugate demonstrated to be 68-fold higher than Erlotinib in highly metastatic and triple negative MDA-MB-231 cell line. The gold conjugate caused DNA damage, reactive oxygen species (ROS) increase and induced apoptosis. Flow cytometry analysis showed that the conjugate induces significant arrest in S and G2/M phases primarily, whereas Erlotinib, as an inhibitor of epidermal growth factor receptor (EGFR), blocks G1/S transition and increases G1 cell population.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Ana Zamora
- Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| |
Collapse
|
27
|
Ismail NA, Salman AA, Mohd Yusof MS, Che Soh SK, Kadir Pahirulzaman KA, Ali HM, Sarip R. Synthesis, cytotoxicity and antineoplastic activities of novel acridine-based platinum(II) organometallic complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
González JJ, Ortega E, Rothemund M, Gold M, Vicente C, de Haro C, Bautista D, Schobert R, Ruiz J. Luminescent Gold(I) Complexes of 1-Pyridyl-3-anthracenylchalcone Inducing Apoptosis in Colon Carcinoma Cells and Antivascular Effects. Inorg Chem 2019; 58:12954-12963. [DOI: 10.1021/acs.inorgchem.9b01901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Jesús González
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Matthias Rothemund
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Madeleine Gold
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Consuelo Vicente
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Concepción de Haro
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | | | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - José Ruiz
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
29
|
Volkov PA, Telezhkin AA, Ivanova NI, Khrapova KO, Gusarova NK, Trofimov BA. Unexpected Reaction of Secondary Phosphine Chalcogenides with Acridine. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219030290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Mohapatra RK, Das PK, Pradhan MK, El-Ajaily MM, Das D, Salem HF, Mahanta U, Badhei G, Parhi PK, Maihub AA, -E-Zahan MK. Recent Advances in Urea- and Thiourea-Based Metal Complexes: Biological, Sensor, Optical, and Corroson Inhibition Studies. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1594204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Pradeep K. Das
- Department of Chemistry, N. C. Autonomous College, Jajpur, Odisha, India
| | - Manoj K. Pradhan
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Marei M. El-Ajaily
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College, Subarnapur, Odisha, India
| | - Halima F. Salem
- Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Umakanta Mahanta
- Department of Chemistry, B. B. Mahavidyalaya, Harichandanpur, Keonjhar, Odisha, India
| | - Gouranga Badhei
- Department of Chemistry, SKDAV Government Polytechnic, Rourkela, Odisha, India
| | - Pankaj K. Parhi
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
31
|
Synthesis, Characterization and Biological Evaluations of New Imidazo[4,5-a]Acridines as Potential Antibacterial Agents. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Sulaiman AAA, Kalia N, Bhatia G, Kaur M, Fettouhi M, Altaf M, Baig N, Kawde AN, Isab AA. Cytotoxic effects of gold(i) complexes against colon, cervical and osteo carcinoma cell lines: a mechanistic approach. NEW J CHEM 2019. [DOI: 10.1039/c9nj02063b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water-soluble gold(i) complexes, [Au(Ipr)(L)]PF6where L = thiourea (Tu)1andN,N′-dimethylthiourea (Me2Tu)2, were synthesized from the parent 1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidenechloridogold(i) [(Ipr)AuCl] (0).
Collapse
Affiliation(s)
- Adam A. A. Sulaiman
- Lab Technical Support Office (LTSO)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry
- Guru Nanak Dev University
- Amritsar
- India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry
- Guru Nanak Dev University
- Amritsar
- India
| | - Manpreet Kaur
- Department of Human Genetics
- Guru Nanak Dev University
- Amritsar
- India
| | - Mohammed Fettouhi
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | | | - Nadeem Baig
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
33
|
Khan SI, Ahmad S, Altaf AA, Rauf MK, Badshah A, Azam SS, Tahir MN. Heteroleptic copper(i) halides with triphenylphosphine and acetylthiourea: synthesis, characterization and biological studies (experimental and molecular docking). NEW J CHEM 2019. [DOI: 10.1039/c9nj03005k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript presents the synthesis of acetylthiourea and triphenylphosphene based hetroleptic copper(i) halides and their biological activities. H-bonding and hydrophobic pi-interactions were found important for their biological activities.
Collapse
Affiliation(s)
- Syed Ishtiaq Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
- Geoscience Advance Research Laboratories
| | - Sajjad Ahmad
- Computational Biology Lab
- National Center for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry
- University of Gujrat
- Gujrat-50700
- Pakistan
| | | | - Amin Badshah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Syed Sikander Azam
- Geoscience Advance Research Laboratories
- Geological Survey of Pakistan
- Islamabad
- Pakistan
| | | |
Collapse
|
34
|
Williams MRM, Bertrand B, Fernandez-Cestau J, Waller ZAE, O'Connell MA, Searcey M, Bochmann M. Acridine-decorated cyclometallated gold(iii) complexes: synthesis and anti-tumour investigations. Dalton Trans 2018; 47:13523-13534. [PMID: 30204186 DOI: 10.1039/c8dt02507j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(C^N) and (C^N^C) cyclometalated Au(iii) represent a highly promising class of potential anticancer agents. We report here the synthesis of seven new cyclometalated Au(iii) complexes with five of them bearing an acridine moiety attached via (N^O) or (N^N) chelates, acyclic amino carbenes (AAC) and N-heterocyclic carbenes (NHC). The antiproliferative properties of the different complexes were evaluated in vitro on a panel of cancer cells including leukaemia, lung and breast cancer cells. We observed a trend between the cytotoxicity and the intracellular gold uptake of some representative compounds of the series. Some of the acridine-decorated complexes were demonstrated to interact with ds-DNA using FRET-melting techniques.
Collapse
|
35
|
Volkov PA, Khrapova KO, Telezhkin AA, Ivanova NI, Albanov AI, Gusarova NK, Trofimov BA. Catalyst-Free Phosphorylation of Acridine with Secondary Phosphine Chalcogenides: Nucleophilic Addition vs SNHAr Reaction. Org Lett 2018; 20:7388-7391. [DOI: 10.1021/acs.orglett.8b03061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pavel A. Volkov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Kseniya O. Khrapova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Anton A. Telezhkin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Nina I. Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Alexander I. Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Nina K. Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
| |
Collapse
|
36
|
Wang X, Cheng L, Xie HJ, Ju RJ, Xiao Y, Fu M, Liu JJ, Li XT. Functional paclitaxel plus honokiol micelles destroying tumour metastasis in treatment of non-small-cell lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1154-1169. [DOI: 10.1080/21691401.2018.1481082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | | | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yao Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
37
|
Zamora A, Gandioso A, Massaguer A, Buenestado S, Calvis C, Hernández JL, Mitjans F, Rodríguez V, Ruiz J, Marchán V. Toward Angiogenesis Inhibitors Based on the Conjugation of Organometallic Platinum(II) Complexes to RGD Peptides. ChemMedChem 2018; 13:1755-1762. [PMID: 29932312 DOI: 10.1002/cmdc.201800282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/19/2018] [Indexed: 12/16/2022]
Abstract
A novel conjugate between a cyclometalated platinum(II) complex with dual antiangiogenic and antitumor activity and a cyclic peptide containing the RGD sequence (-Arg-Gly-Asp-) has been synthesized by combining solid- and solution-phase methodologies. Although peptide conjugation rendered a non-cytotoxic compound in all tested tumor cell lines (± αV β3 and αV β5 integrin receptors), the antiangiogenic activity of the Pt-c(RGDfK) conjugate in human umbilical vein endothelial cells at sub-cytotoxic concentrations opens the way to the design of a novel class of angiogenesis inhibitors through conjugation of metallodrugs with high antiangiogenic activity to cyclic RGD-containing peptides or peptidomimetic analogues.
Collapse
Affiliation(s)
- Ana Zamora
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, 17071, Girona, Spain
| | - Silvia Buenestado
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | - Carme Calvis
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Francesc Mitjans
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
38
|
Johnson A, Marzo I, Gimeno MC. Ylide Ligands as Building Blocks for Bioactive Group 11 Metal Complexes. Chemistry 2018; 24:11693-11702. [DOI: 10.1002/chem.201801600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alice Johnson
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| |
Collapse
|
39
|
Gupta G, Das A, Lee J, Mandal N, Lee CY. Self-Assembled BODIPY-Based Iridium Metallarectangles: Cytotoxicity and Propensity to Bind Biomolecules. Chempluschem 2018; 83:339-347. [PMID: 31957364 DOI: 10.1002/cplu.201800035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/18/2022]
Abstract
A new 4-ethynylpyridine 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based ligand L, which was synthesized by means of the Sonogashira coupling method, was used to obtain two new [2+2] iridium-based metallarectangles, 3 and 4. Ligand L and metallarectangles 3 and 4 were fully characterized through various analytical techniques. The structure of rectangle 4 was further confirmed by single-crystal X-ray diffraction analysis, which showed the formation of an expected [2+2] supramolecule, in which the iridium metal centers were bridged with ligand L to form the desired metallarectangle 4. In the context of the growing biological interest in metallarectangles, rectangle 4 was found to be highly active against two types of cancer cells, with IC50 values almost threefold superior to those of cisplatin. Both 3 and 4 showed dose-dependent abilities to bind bovine serum albumin and salmon sperm DNA; this indicated their tendency to interact with such biomolecules as a potential mode of action.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
40
|
Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Exploring the Effect of Polypyridyl Ligands on the Anticancer Activity of Phosphorescent Iridium(III) Complexes: From Proteosynthesis Inhibitors to Photodynamic Therapy Agents. Chemistry 2018; 24:4607-4619. [DOI: 10.1002/chem.201705362] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics, Centre of the Region Hana for, Biotechnological and Agricultural ResearchPalacky University Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Gloria Vigueras
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Vojtech Novohradsky
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Natalia Cutillas
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany
| | - Hana Kostrhunova
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - José Ruiz
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| |
Collapse
|
41
|
Gui HZ, Wei Y, Shi M. Construction of spirothioureas having an amino quaternary stereogenic center via a [3 + 2] annulation of 3-isothiocyanato oxindoles with 2-aminoacrylates. Org Biomol Chem 2018; 16:9218-9222. [DOI: 10.1039/c8ob02748j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A [3 + 2] annulation of 3-isothiocyanato oxindoles with 2-aminoacrylates was disclosed, affording the corresponding spirocyclic oxindoles containing a spirothiourea structure and an amino quaternary stereogenic center in good to excellent yields.
Collapse
Affiliation(s)
- Hou-Ze Gui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yin Wei
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|