1
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Song H, Hao D, Zhou J, Farmer D, Wang A. Development of pro-angiogenic skin substitutes for wound healing. Wound Repair Regen 2024; 32:208-216. [PMID: 38308588 DOI: 10.1111/wrr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024]
Abstract
Wounds pose significant challenges to public health, primarily due to the loss of the mechanical integrity and barrier function of the skin and impaired angiogenesis, causing physical morbidities and psychological trauma to affect patients. Reconstructing the vasculature of the wound bed is crucial for promoting wound healing, reducing scar formation and enhancing the quality of life for patients. The development of pro-angiogenic skin substitutes has emerged as a promising strategy to facilitate vascularization and expedite the healing process of burn wounds. This review provides an overview of the various types of skin substitutes employed in wound healing, explicitly emphasising those designed to enhance angiogenesis. Synthetic scaffolds, biological matrices and tissue-engineered constructs incorporating stem cells and primary cells, cell-derived extracellular vesicles (EVs), pro-angiogenic growth factors and peptides, as well as gene therapy-based skin substitutes are thoroughly examined. The review summarises the existing challenges, future directions and potential innovations in pro-angiogenic dressing for skin substitutes. It highlights the need for continued research to develop new technologies and combine multiple strategies and factors, and to overcome obstacles and advance the field, ultimately leading to improved outcomes for wound patients.
Collapse
Affiliation(s)
- Hengyue Song
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Dake Hao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Diana Farmer
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Biomedical Engineering, UC Davis, Davis, California, USA
| |
Collapse
|
3
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
4
|
Hao D, Lin J, Liu R, Pivetti C, Yamashiro K, Schutzman LM, Sageshima J, Kwong M, Bahatyrevich N, Farmer DL, Humphries MD, Lam KS, Panitch A, Wang A. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater 2023; 28:467-479. [PMID: 37408799 PMCID: PMC10318457 DOI: 10.1016/j.bioactmat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jonathan Lin
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Kaeli Yamashiro
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Linda M. Schutzman
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Junichiro Sageshima
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Mimmie Kwong
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Misty D. Humphries
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
5
|
Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater 2023; 26:292-305. [PMID: 36950151 PMCID: PMC10027480 DOI: 10.1016/j.bioactmat.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular regeneration and patency maintenance, without anticoagulant administration, represent key developmental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG-conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus formation, and DPB protection against functional masking of DPT's EPC-capture by blood components, which promoted patency and rapid endothelialization in rat and canine artery implantation models without anticoagulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional functionalization to living cells within tissue-engineered constructs.
Collapse
Affiliation(s)
- Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Tang Y, Zheng X, Gao T. Orthogonal Combinatorial Raman Codes Enable Rapid High-Throughput-Out Library Screening of Cell-Targeting Ligands. RESEARCH (WASHINGTON, D.C.) 2023; 6:0136. [PMID: 37214198 PMCID: PMC10198463 DOI: 10.34133/research.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
High-throughput assays play an important role in the fields of drug discovery, genetic analysis, and clinical diagnostics. Although super-capacity coding strategies may facilitate labeling and detecting large numbers of targets in a single assay, practically, the constructed large-capacity codes have to be decoded with complicated procedures or are lack of survivability under the required reaction conditions. This challenge results in either inaccurate or insufficient decoding outputs. Here, we identified chemical-resistant Raman compounds to build a combinatorial coding system for the high-throughput screening of cell-targeting ligands from a focused 8-mer cyclic peptide library. The accurate in situ decoding results proved the signal, synthetic, and functional orthogonality for this Raman coding strategy. The orthogonal Raman codes allowed for a rapid identification of 63 positive hits at one time, evidencing a high-throughput-out capability in the screening process. We anticipate this orthogonal Raman coding strategy being generalized to enable efficient high-throughput-out screening of more useful ligands for cell targeting and drug discovery.
Collapse
|
7
|
Song H, Gao K, Hao D, Li A, Liu R, Anggito B, Yin B, Jin Q, Dartora V, Lam KS, Smith LR, Panitch A, Zhou J, Farmer DL, Wang A. Engineered multi-functional, pro-angiogenic collagen-based scaffolds loaded with endothelial cells promote large deep burn wound healing. Front Pharmacol 2023; 14:1125209. [PMID: 36937891 PMCID: PMC10014525 DOI: 10.3389/fphar.2023.1125209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The lack of vascularization associated with deep burns delays the construction of wound beds, increases the risks of infection, and leads to the formation of hypertrophic scars or disfigurement. To address this challenge, we have fabricated a multi-functional pro-angiogenic molecule by grafting integrin αvβ3 ligand LXW7 and collagen-binding peptide (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY (LDS), and further employed this to functionalize collagen-based Integra scaffolds. Using a large deep burn wound model in C57/BLK6 mice (8-10 weeks old, 26-32g, n = 39), we demonstrated that LDS-modified collagen-based Integra scaffolds loaded with endothelial cells (ECs) accelerate wound healing rate, re-epithelialization, vascularization, and collagen deposition. Specifically, a 2 cm × 3 cm full-thickness skin burn wound was created 48 h after the burn, and then wounds were treated with four groups of different dressing scaffolds, including Integra + ECs, Integra + LDS, and Integra + LDS + ECs with Integra-only as the control. Digital photos were taken for wound healing measurement on post-treatment days 1, 7, 14, 21, 28, and 35. Post-treatment photos revealed that treatment with the Intgera + LDS + ECs scaffold exhibited a higher wound healing rate in the proliferation phase. Histology results showed significantly increased re-epithelialization, increased collagen deposition, increased thin and mixed collagen fiber content, increased angiogenesis, and shorter wound length within the Integra + LDS + ECs group at Day 35. On Day 14, the Integra + LDS + ECs group showed the same trend. The relative proportions of collagen changed from Day 14 to Day 35 in the Integra + LDS + ECs and Integra + ECs groups demonstrated decreased thick collagen fiber deposition and greater thin and mixed collagen fiber deposition. LDS-modified Integra scaffolds represent a promising novel treatment to accelerate deep burn wound healing, thereby potentially reducing the morbidity associated with open burn wounds. These scaffolds can also potentially reduce the need for autografting and morbidity in patients with already limited areas of harvestable skin.
Collapse
Affiliation(s)
- Hengyue Song
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Kewa Gao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Dake Hao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Andrew Li
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Division of Plastic Surgery, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Bryan Anggito
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States
| | - Boyan Yin
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Qianyu Jin
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- College of Biological Sciences, University of California Davis, Davis, CA, United States
| | - Vanessa Dartora
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Lucas R. Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, United States
- Department of Physical Medicine and Rehabilitation, UC Davis Medical Center, Sacramento, CA, United States
| | - Alyssa Panitch
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Diana L. Farmer
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States
| |
Collapse
|
8
|
Hao D, Liu R, Fernandez TG, Pivetti C, Jackson JE, Kulubya ES, Jiang HJ, Ju HY, Liu WL, Panitch A, Lam KS, Leach JK, Farmer DL, Wang A. A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects. Bioact Mater 2023; 20:179-193. [PMID: 35663336 PMCID: PMC9160290 DOI: 10.1016/j.bioactmat.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4β1 and αvβ3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4β1 and αvβ3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments. Two integrin-binding ligands for constructing vascularized bone biomaterial. Extracellular matrix (ECM)-mimicking collagen-based biomaterial with specific integrin binding sites for cell adhesion. Biomaterial regulates adhesion of endogenous stem cells with osteogenic and angiogenic potentials. Biomaterial promotes vascularized bone formation in adult and fetal bone defects without safety issues. An easy-to-make and off-the-shelf biomaterial for treatment of clinical bone diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Tomas Gonzalez Fernandez
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jordan Elizabeth Jackson
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Edwin Samuel Kulubya
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Hong-Jiang Jiang
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Hai-Yang Ju
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Wen-Liang Liu
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
- Corresponding author. Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
11
|
Hao D, Lu L, Song H, Duan Y, Chen J, Carney R, Li JJ, Zhou P, Nolta J, Lam KS, Leach JK, Farmer DL, Panitch A, Wang A. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022; 12:6021-6037. [PMID: 35966577 PMCID: PMC9373818 DOI: 10.7150/thno.70448] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/24/2022] [Indexed: 01/26/2023] Open
Abstract
Although stem cell-derived extracellular vesicles (EVs) have remarkable therapeutic potential for various diseases, the therapeutic efficacy of EVs is limited due to their degradation and rapid diffusion after administration, hindering their translational applications. Here, we developed a new generation of collagen-binding EVs, by chemically conjugating a collagen-binding peptide SILY to EVs (SILY-EVs), which were designed to bind to collagen in the extracellular matrix (ECM) and form an EV-ECM complex to improve EVs' in situ retention and therapeutic efficacy after transplantation. Methods: SILY was conjugated to the surface of mesenchymal stem/stromal cell (MSC)-derived EVs by using click chemistry to construct SILY-EVs. Nanoparticle tracking analysis (NTA), ExoView analysis, cryogenic electron microscopy (cryo-EM) and western-blot analysis were used to characterize the SILY-EVs. Fluorescence imaging (FLI), MTS assay, ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to evaluate the collagen binding and biological functions of SILY-EVs in vitro. In a mouse hind limb ischemia model, the in vivo imaging system (IVIS), laser doppler perfusion imaging (LDPI), micro-CT, FLI and RT-qPCR were used to determine the SILY-EV retention, inflammatory response, blood perfusion, gene expression, and tissue regeneration. Results:In vitro, the SILY conjugation significantly enhanced EV adhesion to the collagen surface and did not alter the EVs' biological functions. In the mouse hind limb ischemia model, SILY-EVs presented longer in situ retention, suppressed inflammatory responses, and significantly augmented muscle regeneration and vascularization, compared to the unmodified EVs. Conclusion: With the broad distribution of collagen in various tissues and organs, SILY-EVs hold promise to improve the therapeutic efficacy of EV-mediated treatment in a wide range of diseases and disorders. Moreover, SILY-EVs possess the potential to functionalize collagen-based biomaterials and deliver therapeutic agents for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Lu Lu
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Hengyue Song
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jianing Chen
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Randy Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Ping Zhou
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jan Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Alyssa Panitch
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Yuan Y, Zhang C, He Y, Yuan L, Zhao Q, Liu Y, Long S. Curcumin improves the function of umbilical vein endothelial cells by inhibiting H 2O 2‑induced pyroptosis. Mol Med Rep 2022; 25:214. [PMID: 35543146 PMCID: PMC9133960 DOI: 10.3892/mmr.2022.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022] Open
Abstract
Endothelial cell (EC) dysfunction is one of the initiating factors of atherosclerosis. EC dysfunction is primarily caused by oxidative damage and inflammation. As a classic non-specific antioxidant and anti-inflammatory drug, curcumin has been widely used in studies of lipid metabolism disorders. However, whether curcumin is able to alleviate H2O2-induced EC damage and its related mechanisms has remained to be elucidated. The present study confirmed the protective effects of curcumin on human umbilical vein endothelial cells (HUVECs). A HUVEC injury model was established using H2O2 and the optimal concentrations and time of curcumin to achieve therapeutic effects were explored. Curcumin was observed to inhibit H2O2-induced pyroptosis by inhibiting the activation of NOD-, LRR- and pyrin domain-containing protein 3. In addition, curcumin improved HUVEC function by restoring αvβ3 and reducing endothelin-1 expression. In conclusion, the results of the present study revealed the mechanism through which curcumin inhibits pyroptosis and indicated that curcumin may have a potential utility in treating diseases of EC dysfunction.
Collapse
Affiliation(s)
- Yulin Yuan
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| | - Caiping Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| | - Yunwu He
- Department of Pain, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi Yuan
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| | - Qian Zhao
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| | - Yuhe Liu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
14
|
He S, Walimbe T, Chen H, Gao K, Kumar P, Wei Y, Hao D, Liu R, Farmer DL, Lam KS, Zhou J, Panitch A, Wang A. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. Bioact Mater 2022; 10:460-473. [PMID: 34901560 PMCID: PMC8636679 DOI: 10.1016/j.bioactmat.2021.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic ischemic wound treatment remains a critical clinical challenge. Neovascularization plays a significant role in wound healing during all stages of the tissue repair process. Strategies that enhance angiogenesis and neovascularization and improve ischemic pathology may promote the healing of poor wounds, particularly diabetic wounds in highly ischemic conditions. We previously identified a cyclic peptide LXW7 that specifically binds to integrin αvβ3 on endothelial progenitor cells (EPCs) and endothelial cells (ECs), activates vascular endothelial growth factor (VEGF) receptors, and promotes EC growth and maturation. In this study, we designed and synthesized a multi-functional pro-angiogenic molecule by grafting LXW7 and collagen-binding peptides (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY, and further employed this multi-functional molecule to functionalize collagen-based extracellular matrix (ECM) scaffolds. We confirmed that LXW7-DS-SILY modification significantly promoted EPC attachment and growth on the ECM scaffolds in vitro and supported EPC survival in vivo in the ischemic environment. When applied in an established Zucker Diabetic Fatty (ZDF) rat ischemic skin flap model, LXW7-DS-SILY-functionalized ECM scaffolds loaded with EPCs significantly improved wound healing, enhanced neovascularization and modulated collagen fibrillogenesis in the ischemic environment. Altogether, this study provides a promising novel treatment to accelerate diabetic ischemic wound healing, thereby reducing limb amputation and mortality of diabetic patients.
Collapse
Affiliation(s)
- Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
| | - Tanaya Walimbe
- Department of Biomedical Engineering, UC Davis, United States
| | | | - Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Priyadarsini Kumar
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Yifan Wei
- Department of Surgery, UC Davis, United States
| | - Dake Hao
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Diana L Farmer
- Department of Surgery, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, China
| | - Alyssa Panitch
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
| | - Aijun Wang
- Department of Surgery, UC Davis, United States
- Department of Biomedical Engineering, UC Davis, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, United States
| |
Collapse
|
15
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
16
|
Walimbe T, Dehghani T, Casella A, Lin J, Wang A, Panitch A. Proangiogenic Collagen-Binding Glycan Therapeutic Promotes Endothelial Cell Angiogenesis. ACS Biomater Sci Eng 2021; 7:3281-3292. [PMID: 34192455 DOI: 10.1021/acsbiomaterials.1c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulating angiogenesis during wound healing continues to present a significant clinical challenge, given the limitations of current strategies to maintain therapeutic doses of growth factors and endothelial cell efficacy. Incorporating a balance of specific cues to encourage endothelial cell engraftment and cytokines to facilitate angiogenesis is necessary for blood vessel growth in the proinflammatory wound environment. Here, we incorporate a previously designed peptide (LXW7) capable of binding to the αvβ3 integrin of endothelial cells with a dermatan sulfate glycosaminoglycan backbone grafted with collagen-binding peptides (SILY). By exploiting αvβ3 integrin-mediated VEGF signaling, we propose an alternative strategy to overcome shortcomings of traditional growth factor therapy while homing the peptide to the wound bed. In this study, we describe the synthesis and optimization of LXW7-DS-SILY (LDS) variants and evaluate their angiogenic potential in vitro and in vivo. LDS displayed binding to collagen and endothelial cells. In vitro, the LDS variant with six LXW7 peptides increased endothelial cell proliferation, migration, and tubule formation through increased VEGFR2 phosphorylation compared to nontreated controls. In an in vivo chick chorioallantoic membrane assay, LDS laden collagen hydrogels increased blood vessel formation by 43% in comparison to the organism matched blank hydrogels. Overall, these findings demonstrate the potential of a robust targeted glycan therapeutic for promoting angiogenesis during wound healing.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, California 95616, United States
| | - Tima Dehghani
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, California 95616, United States
| | - Alena Casella
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, California 95616, United States
| | - Jenny Lin
- Department of Surgery, Indiana University School of Medicine, 525 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, California 95616, United States.,Department of Surgery, University of California Davis Health, 2335 Stockton Blvd., Sacramento, California 95817, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, California 95616, United States.,Department of Surgery, University of California Davis Health, 2335 Stockton Blvd., Sacramento, California 95817, United States
| |
Collapse
|
17
|
Xu H, Lee CW, Wang YF, Huang S, Shin LY, Wang YH, Wan Z, Zhu X, Yung PSH, Lee OKS. The Role of Paracrine Regulation of Mesenchymal Stem Cells in the Crosstalk With Macrophages in Musculoskeletal Diseases: A Systematic Review. Front Bioeng Biotechnol 2020; 8:587052. [PMID: 33324622 PMCID: PMC7726268 DOI: 10.3389/fbioe.2020.587052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
The phenotypic change of macrophages (Mφs) plays a crucial role in the musculoskeletal homeostasis and repair process. Although mesenchymal stem cells (MSCs) have been shown as a novel approach in tissue regeneration, the therapeutic potential of MSCs mediated by the interaction between MSC-derived paracrine mediators and Mφs remains elusive. This review focused on the elucidation of paracrine crosstalk between MSCs and Mφs during musculoskeletal diseases and injury. The search method was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and Cochrane Guidelines. The search strategies included MeSH terms and other related terms of MSC-derived mediators and Mφs. Ten studies formed the basis of this review. The current finding suggested that MSC administration promoted proliferation and activation of CD163+ or CD206+ M2 Mφs in parallel with reduction of proinflammatory cytokines and increase in anti-inflammatory cytokines. During such period, Mφs also induced MSCs into a motile and active phenotype via the influence of proinflammatory cytokines. Such crosstalk between Mφs and MSCs further strengthens the effect of paracrine mediators from MSCs to regulate Mφs phenotypic alteration. In conclusion, MSCs in musculoskeletal system, mediated by the interaction between MSC paracrine and Mφs, have therapeutic potential in musculoskeletal diseases.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Developmental and Regenerative Biology TRP, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lih-Ying Shin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihao Wan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaobo Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopadics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA J 2020; 11:629-643. [PMID: 33240451 DOI: 10.1007/s13167-020-00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Stimulated by the leading mortalities of cardiovascular diseases (CVDs), various types of cardiovascular biomaterials have been widely investigated in the past few decades. Although great therapeutic effects can be achieved by bare metal stents (BMS) and drug-eluting stents (DES) within months or years, the long-term complications such as late thrombosis and restenosis have limited their further applications. It is well accepted that rapid endothelialization is a promising approach to eliminate these complications. Convincing evidence has shown that endothelial progenitor cells (EPCs) could be mobilized into the damaged vascular sites systemically and achieve endothelial repair in situ, which significantly contributes to the re-endothelialization process. Therefore, how to effectively capture EPCs via specific molecules immobilized on biomaterials is an important point to achieve rapid endothelialization. Further, in the context of predictive, preventive, personalized medicine (PPPM), the abnormal number alteration of EPCs in circulating blood and certain inflammation responses can also serve as important indicators for predicting and preventing early cardiovascular disease. In this contribution, we mainly focused on the following sections: the definition and classification of EPCs, the mechanisms of EPCs in treating CVDs, the potential diagnostic role of EPCs in predicting CVDs, as well as the main strategies for cardiovascular biomaterials to capture EPCs.
Collapse
|
19
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
20
|
Hao D, Liu R, Gao K, He C, He S, Zhao C, Sun G, Farmer DL, Panitch A, Lam KS, Wang A. Developing an Injectable Nanofibrous Extracellular Matrix Hydrogel With an Integrin αvβ3 Ligand to Improve Endothelial Cell Survival, Engraftment and Vascularization. Front Bioeng Biotechnol 2020; 8:890. [PMID: 32850742 PMCID: PMC7403189 DOI: 10.3389/fbioe.2020.00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
Endothelial cell (EC) transplantation via injectable collagen hydrogel has received much attention as a potential treatment for various vascular diseases. However, the therapeutic effect of transplanted ECs is limited by their poor viability, which partially occurs as a result of cellular apoptosis triggered by the insufficient cell-extracellular matrix (ECM) engagement. Integrin binding to the ECM is crucial for cell anchorage to the surrounding matrix, cell spreading and migration, and further activation of intracellular signaling pathways. Although collagen contains several different types of integrin binding sites, it still lacks sufficient specific binding sites for ECs. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LXW7, an integrin αvβ3 ligand, which possessed a strong binding affinity to and enhanced functionality of ECs. In this study, to improve the EC-matrix interaction, we developed an approach to molecularly conjugate LXW7 to the collagen backbone, via a collagen binding peptide SILY, in order to increase EC specific integrin binding sites on the collagen hydrogel. Results showed that in the in vitro 2-dimensional (2D) culture model, the LXW7-treated collagen surface significantly improved EC attachment and survival and decreased caspase 3 activity in an ischemic-mimicking environment. In the in vitro 3-dimensional (3D) culture model, LXW7-modified collagen hydrogel significantly improved EC spreading, proliferation, and survival. In a mouse subcutaneous implantation model, LXW7-modified collagen hydrogel improved the engraftment of transplanted ECs and supported ECs to form vascular network structures. Therefore, LXW7-functionalized collagen hydrogel has shown promising potential to improve vascularization in tissue regeneration and may be used as a novel tool for EC delivery and the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kewa Gao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Chuanchao He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Siqi He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol 2020; 8:633. [PMID: 32671037 PMCID: PMC7329993 DOI: 10.3389/fbioe.2020.00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an ex vivo rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Hila Shimshi Swindell
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Hao D, Fan Y, Xiao W, Liu R, Pivetti C, Walimbe T, Guo F, Zhang X, Farmer DL, Wang F, Panitch A, Lam KS, Wang A. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater 2020; 108:178-193. [PMID: 32151698 DOI: 10.1016/j.actbio.2020.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
Abstract
Establishing and maintaining a healthy endothelium on vascular and intravascular devices is crucial for the prevention of thrombosis and stenosis. Generating a biofunctional surface on vascular devices to recruit endothelial progenitor cells (EPCs) and endothelial cells (ECs) has proven efficient in promoting in situ endothelialization. However, molecules conventionally used for EPC/EC capturing generally lack structural stability, capturing specificity, and biological functionalities, which have limited their applications. Discovery of effective, specific, and structurally stable EPC/EC capturing ligands is desperately needed. Using the high-throughput One-Bead One-Compound combinatorial library screening technology, we recently identified a disulfide cyclic octa-peptide LXW7 (cGRGDdvc), which possesses strong binding affinity and functionality to EPCs/ECs, weak binding to platelets, and no binding to inflammatory cells. Because LXW7 is cyclic and 4 out of the 8 amino acids are unnatural D-amino acids, LXW7 is highly proteolytically stable. In this study, we applied LXW7 to modify small diameter vascular grafts using a Click chemistry approach. In vitro studies demonstrated that LXW7-modified grafts significantly improved EPC attachment, proliferation and endothelial differentiation and suppressed platelet attachment. In a rat carotid artery bypass model, LXW7 modification of the small diameter vascular grafts significantly promoted EPC/EC recruitment and rapidly achieved endothelialization. At 6 weeks after implantation, LXW7-modified grafts retained a high patency of 83%, while the untreated grafts had a low patency of 17%. Our results demonstrate that LXW7 is a potent EPC/EC capturing and platelet suppressing ligand and LXW7-modified vascular grafts rapidly generate a healthy and stable endothelial interface between the graft surface and the circulation to reduce thrombosis and improve patency. STATEMENT OF SIGNIFICANCE: In this study, One-Bead One-Compound (OBOC) technology has been applied for the first time in discovering bioactive ligands for tissue regeneration applications. Current molecules used to modify artificial vascular grafts generally lack EPC/EC capturing specificity, biological functionalities and structural stability. Using OBOC technology, we identified LXW7, a constitutionally stable disulfide cyclic octa-peptide with strong binding affinity and biological functionality to EPCs/ECs, very weak binding to platelets and no binding to inflammatory cells. These characteristics are crucial for promoting rapid endothelialization to prevent thrombosis and improve patency of vascular grafts. LXW7 coating technology could be applied to a wide range of vascular and intravascular devices, including grafts, stents, cardiac valves, and catheters, where a "living" endothelium and healthy blood interface are needed.
Collapse
|
23
|
Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells 2020; 12:123-138. [PMID: 32184937 PMCID: PMC7062038 DOI: 10.4252/wjsc.v12.i2.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) have been implicated in the process of vascularization, which includes vasculogenesis and angiogenesis. Vasculogenesis is a de novo formation of blood vessels, and is an essential physiological process that occurs during embryonic development and tissue regeneration. Angiogenesis is the growth of new capillaries from pre-existing blood vessels, which is observed both prenatally and postnatally. The placenta is an organ composed of a variety of fetal-derived cells, including ECFCs, and therefore has significant potential as a source of fetal ECFCs for tissue engineering.
AIM To investigate the possibility of isolating clonal ECFCs from human early gestation chorionic villi (CV-ECFCs) of the placenta, and assess their potential for tissue engineering.
METHODS The early gestation chorionic villus tissue was dissociated by enzyme digestion. Cells expressing CD31 were selected using magnetic-activated cell sorting, and plated in endothelial-specific growth medium. After 2-3 wks in culture, colonies displaying cobblestone-like morphology were manually picked using cloning cylinders. We characterized CV-ECFCs by flow cytometry, immunophenotyping, tube formation assay, and Dil-Ac-LDL uptake assay. Viral transduction of CV-ECFCs was performed using a Luciferase/tdTomato-containing lentiviral vector, and transduction efficiency was tested by fluorescent microscopy and flow cytometry. Compatibility of CV-ECFCs with a delivery vehicle was determined using an FDA approved, small intestinal submucosa extracellular matrix scaffold.
RESULTS After four passages in 6-8 wks of culture, we obtained a total number of 1.8 × 107 CV-ECFCs using 100 mg of early gestational chorionic villus tissue. Immunophenotypic analyses by flow cytometry demonstrated that CV-ECFCs highly expressed the endothelial markers CD31, CD144, CD146, CD105, CD309, only partially expressed CD34, and did not express CD45 and CD90. CV-ECFCs were capable of acetylated low-density lipoprotein uptake and tube formation, similar to cord blood-derived ECFCs (CB-ECFCs). CV-ECFCs can be transduced with a Luciferase/tdTomato-containing lentiviral vector at a transduction efficiency of 85.1%. Seeding CV-ECFCs on a small intestinal submucosa extracellular matrix scaffold confirmed that CV-ECFCs were compatible with the biomaterial scaffold.
CONCLUSION In summary, we established a magnetic sorting-assisted clonal isolation approach to derive CV-ECFCs. A substantial number of CV-ECFCs can be obtained within a short time frame, representing a promising novel source of ECFCs for fetal treatments.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, United States
| |
Collapse
|
24
|
Hao D, Ma B, He C, Liu R, Farmer DL, Lam KS, Wang A. Surface modification of polymeric electrospun scaffolds via a potent and high-affinity integrin α4β1 ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering. J Mater Chem B 2020; 8:1649-1659. [PMID: 32011618 PMCID: PMC7353926 DOI: 10.1039/c9tb02309g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-biomaterial interactions are primarily governed by cell adhesion, which arises from the binding of cellular integrins to the extracellular matrix (ECM). Integrins drive the assembly of focal contacts that serve as mechanotransducers and signaling nexuses for stem cells, for example integrin α4β1 plays pivotal roles in regulating mesenchymal stem cell (MSC) homing, adhesion, migration and differentiation. The strategy to control the integrin-mediated cell adhesion to bioinspired, ECM-mimicking materials is essential to regulate cell functions and tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we discovered that LLP2A was a high-affinity peptidomimetic ligand (IC50 = 2 pM) against integrin α4β1. In this study, we identified that LLP2A had a strong binding to human early gestation chorionic villi-derived MSCs (CV-MSCs) via integrin α4β1. To improve CV-MSC seeding, expansion and delivery for regenerative applications, we constructed artificial scaffolds simulating the structure of the native ECM by immobilizing LLP2A onto the scaffold surface as cell adhesion sites. LLP2A modification significantly enhanced CV-MSC adhesion, spreading and viability on the polymeric scaffolds via regulating signaling pathways including phosphorylation of focal adhesion kinase (FAK), and AKT, NF-kB and Caspase 9. In addition, we also demonstrated that LLP2A had strong binding to MSCs of other sources, such as bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs). Therefore, LLP2A and its derivatives not only hold great promise for improving CV-MSC-mediated treatment of fetal diseases, but they can also be widely applied to functionalize various biological and medical materials, which are in need of MSC recruitment, enrichment and survival, for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Bowen Ma
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Chuanchao He
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA and Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
25
|
Ramasubramanian L, Kumar P, Wang A. Engineering Extracellular Vesicles as Nanotherapeutics for Regenerative Medicine. Biomolecules 2019; 10:E48. [PMID: 31905611 PMCID: PMC7023093 DOI: 10.3390/biom10010048] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/01/2023] Open
Abstract
Long thought of to be vesicles that primarily recycled waste biomolecules from cells, extracellular vesicles (EVs) have now emerged as a new class of nanotherapeutics for regenerative medicine. Recent studies have proven their potential as mediators of cell proliferation, immunomodulation, extracellular matrix organization and angiogenesis, and are currently being used as treatments for a variety of diseases and injuries. They are now being used in combination with a variety of more traditional biomaterials and tissue engineering strategies to stimulate tissue repair and wound healing. However, the clinical translation of EVs has been greatly slowed due to difficulties in EV isolation and purification, as well as their limited yields and functional heterogeneity. Thus, a field of EV engineering has emerged in order to augment the natural properties of EVs and to recapitulate their function in semi-synthetic and synthetic EVs. Here, we have reviewed current technologies and techniques in this growing field of EV engineering while highlighting possible future applications for regenerative medicine.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California–Davis, Sacramento, CA 95817, USA (P.K.)
- Department of Biomedical Engineering, University of California–Davis, Davis, CA 95616, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California–Davis, Sacramento, CA 95817, USA (P.K.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children–Northern California, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California–Davis, Sacramento, CA 95817, USA (P.K.)
- Department of Biomedical Engineering, University of California–Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children–Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Peng S, Jia J, Sun J, Xie Q, Zhang X, Deng Y, Yi L. LXW7 attenuates inflammation via suppressing Akt/nuclear factor kappa B and mitogen-activated protein kinases signaling pathways in lipopolysaccharide-stimulated BV2 microglial cells. Int Immunopharmacol 2019; 77:105963. [DOI: 10.1016/j.intimp.2019.105963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
|
27
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
28
|
Jia J, Li C, Zhang T, Sun J, Peng S, Xie Q, Huang Y, Yi L. CeO 2@PAA-LXW7 Attenuates LPS-Induced Inflammation in BV2 Microglia. Cell Mol Neurobiol 2019; 39:1125-1137. [PMID: 31256326 DOI: 10.1007/s10571-019-00707-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Microglia are the inherent immune effector cells in the central nervous system (CNS), are activated rapidly when the CNS is stimulated by ischaemia, infection, injury, etc. and participate in and aggravate the development of inflammatory reactions in the CNS. During the process of microglial activation, inflammatory factors such as TNF-α and IL-1β and an abundance of reactive oxygen species (ROS)/reactive nitrogen species (RNS), are released by damaged nerve cells. LXW7 is a small molecule peptide and specifically binds with integrin αvβ3. Cerium oxide nanoparticles (nanoceria) are strong free radical scavengers and are widely used in many studies. In this research, a model of inflammation was established using lipopolysaccharide (LPS) to induce BV2 microglia activation, and the effects of CeO2@PAA (synthetic nanoscale cerium oxide particles), LXW7 and CeO2@PAA-LXW7 were evaluated. We detected the expression level of inflammatory factors, the release of NO in BV2 cells and the generation of intracellular ROS. The expression levels of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) and their phosphorylated proteins were detected in BV2 microglia. We found that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 all effectively inhibited the activation of BV2 microglia, reduced the production of cytokines and the release of NO and reduced the production of intracellular ROS. The three treatments all inhibited the phosphorylation of FAK and STAT3 in BV2 microglia. Regarding these effects, CeO2@PAA-LXW7 was more effective than the other two monotherapies. Our data indicate that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 can exert a neuroprotective function by inhibiting the inflammatory response of LPS-induced BV2 microglia. LXW7 may inhibit the activation of FAK and STAT3 signals in combination with integrin αvβ3 to restrain neuroinflammation and the antioxidative stress effect of cerium oxide; hence, CeO2@PAA-LXW7 can exert a more robust anti-inflammatory and neuroprotective effect via synergistically suppressing the ability of LXW7 to influence the integrin pathway and the free radical-scavenging ability of CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia Province, China
| | - Ting Zhang
- Department of Phoenix International Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China.
| |
Collapse
|
29
|
Jones Buie JN, Zhou Y, Goodwin AJ, Cook JA, Vournakis J, Demcheva M, Broome AM, Dixit S, Halushka PV, Fan H. Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis. Inflammation 2019; 42:170-184. [PMID: 30244405 PMCID: PMC6380957 DOI: 10.1007/s10753-018-0882-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.
Collapse
Affiliation(s)
- Joy N Jones Buie
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA
| | - Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA
- Department of Biopharmaceutics College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Andrew J Goodwin
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John Vournakis
- Marine Polymer Technologies, Inc., Burlington, MA, 01803, USA
| | - Marina Demcheva
- Marine Polymer Technologies, Inc., Burlington, MA, 01803, USA
| | - Ann-Marie Broome
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Cell & Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suraj Dixit
- Department of Cell & Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave., MSC 908, CRI Room 610, Charleston, SC, 29425, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
30
|
Gao K, Kumar P, Cortez-Toledo E, Hao D, Reynaga L, Rose M, Wang C, Farmer D, Nolta J, Zhou J, Zhou P, Wang A. Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:34. [PMID: 30670078 PMCID: PMC6341603 DOI: 10.1186/s13287-019-1138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Background Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. Methods In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. Results In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 μl to 155.78 ± 44.93 μl in a tail-clip assay. Conclusions This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA. Electronic supplementary material The online version of this article (10.1186/s13287-019-1138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Elizabeth Cortez-Toledo
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Melanie Rose
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Chuwang Wang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA. .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA. .,Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
31
|
Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles 2018; 7:1522236. [PMID: 30275938 PMCID: PMC6161586 DOI: 10.1080/20013078.2018.1522236] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Through traditional medicine, there were diseases and disorders that previously remained untreated or were simply thought to be incurable. Since the discovery of mesenchymal stem cells (MSCs), there has been a flurry of research to develop MSC-based therapy for diseases and disorders. It is now well-known that MSCs do not typically engraft after transplantation and exhibit their therapeutic effect via a paracrine mechanism. In addition to secretory proteins, MSCs also produce extracellular vesicles (EVs), membrane-bound nanovesicles containing proteins, DNA and RNA. The secreted vesicles then interact with target cells and deliver their contents, imparting their ultimate therapeutic effect. Unlike the widely studied cancer cells, the yield of MSC-exosomes is a limiting factor for large-scale production for cell-free therapies. Here we summarise potential approaches to increase the yield of such vesicles while maintaining or enhancing their efficacy by engineering the extracellular environment and intracellular components of MSCs.
Collapse
Affiliation(s)
- Jennifer Phan
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,CIRM Bridges to Stem Cell Research Program, California State University, Sacramento, CA, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Kewa Gao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
32
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
33
|
Komnatnyy VV, Nielsen TE, Qvortrup K. Bead-based screening in chemical biology and drug discovery. Chem Commun (Camb) 2018; 54:6759-6771. [PMID: 29888365 DOI: 10.1039/c8cc02486c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
Collapse
Affiliation(s)
- Vitaly V Komnatnyy
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | | | | |
Collapse
|
34
|
Jia J, Zhang T, Chi J, Liu X, Sun J, Xie Q, Peng S, Li C, Yi L. Neuroprotective Effect of CeO 2@PAA-LXW7 Against H 2O 2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells. Neurochem Res 2018; 43:1439-1453. [PMID: 29882125 DOI: 10.1007/s11064-018-2559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
CeO2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO2@PAA-LXW7, a new compound that couples CeO2@PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H2O2-induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO2@PAA, and CeO2@PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H2O2-induced injury. We used H2O2-induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO2@PAA-LXW7. In this study, LXW7, CeO2@PAA, and CeO2@PAA-LXW7 inhibit H2O2-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H2O2-induced NGF-differentiated PC12 cells, whereas LXW7, CeO2@PAA, and CeO2@PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO2@PAA-LXW7 on H2O2-induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO2@PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H2O2-induced NGF-differentiated PC12 cells. LXW7, CeO2@PAA, and CeO2@PAA-LXW7 can play neuroprotective roles by counteracting the oxidative stress and apoptosis induced by H2O2 in NGF-differentiated PC12 cells. CeO2@PAA-LXW7 exerting a more powerful synergistic effect via the conjunction of LXW7 and CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Ting Zhang
- Department of Phoenix international medical center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jieshan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiaoma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
35
|
Abstract
Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.
Collapse
Affiliation(s)
- T Tian
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Zhang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cai
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Furka Á. Plagiarism in Scientific Publishing - the Issue of Patent Holder (War Between Developed and Undeveloped Countries) - Letter to Editor. Acta Inform Med 2018; 26:73-74. [PMID: 29719320 PMCID: PMC5869275 DOI: 10.5455/aim.2018.26.73-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Árpád Furka
- Department of Organic Chemistry, Eötvös Loránd University Budapest, Hungary
| |
Collapse
|
37
|
Ryzhuk V, Zeng XX, Wang X, Melnychuk V, Lankford L, Farmer D, Wang A. Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:191-202. [PMID: 29407148 DOI: 10.1016/j.msec.2017.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/29/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Volodymyr Ryzhuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Xu-Xin Zeng
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; Pharmaceutical Laboratory, School of Medicine, Foshan University, No. 5 Hebin Rd., Foshan, Guangdong, PR China
| | - Xijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; School of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, PR China
| | - Veniamin Melnychuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
38
|
Kabagambe SK, Lankford L, Kumar P, Chen YJ, Herout KT, Lee CJ, Stark RA, Farmer DL, Wang A. Isolation of myogenic progenitor cell population from human placenta: A pilot study. J Pediatr Surg 2017; 52:2078-2082. [PMID: 28964407 DOI: 10.1016/j.jpedsurg.2017.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/28/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of this study was to demonstrate a method of isolating myogenic progenitor cells from human placenta chorionic villi and to confirm the myogenic characteristics of the isolated cells. METHODS Cells were isolated from chorionic villi of a second trimester male placenta via a combined enzymatic digestion and explant culture. A morphologically distinct subpopulation of elongated and multinucleated cells was identified. This subpopulation was manually passaged from the explant culture, expanded, and analyzed by fluorescence in situ hybridization (FISH) assay, immunocytochemistry, and flow cytometry. Myogenic characteristics including alignment and fusion were tested by growing these cells on aligned polylactic acid microfibrous scaffold in a fusion media composed of 2% horse serum in Dulbecco's modified Eagle medium/high glucose. RESULTS The expanded subpopulation was uniformly positive for integrin α-7. Presence of Y-chromosome by FISH analysis confirmed chorionic villus origin rather than maternal cell contamination. Isolated cells grew, aligned, and fused on the microfibrous scaffold, and they expressed myogenin, desmin, and MHC confirming their myogenic identity. CONCLUSION Myogenic progenitor cells can be isolated from human chorionic villi. This opens the possibility for translational and clinical applications using autologous myogenic cells for possible engraftment in treatment of chest and abdominal wall defects.
Collapse
Affiliation(s)
| | - Lee Lankford
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Y Julia Chen
- University of California, Davis Health, Sacramento, CA, USA
| | - Kyle T Herout
- University of California, Davis Health, Sacramento, CA, USA
| | - Chelsey J Lee
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Diana L Farmer
- University of California, Davis Health, Sacramento, CA, USA
| | - Aijun Wang
- University of California, Davis Health, Sacramento, CA, USA
| |
Collapse
|