1
|
Gomari MM, Ghantabpour T, Pourgholam N, Rostami N, Hatfield SM, Namazifar F, Abkhiz S, Eslami SS, Ramezanpour M, Darestanifarahani M, Astsaturov I, Bencherif SA. Breaking barriers: Smart vaccine platforms for cancer immunomodulation. Cancer Commun (Lond) 2025. [PMID: 39901621 DOI: 10.1002/cac2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Despite significant advancements in cancer treatment, current therapies often fail to completely eradicate malignant cells. This shortfall underscores the urgent need to explore alternative approaches such as cancer vaccines. Leveraging the immune system's natural ability to target and kill cancer cells holds great therapeutic potential. However, the development of cancer vaccines is hindered by several challenges, including low stability, inadequate immune response activation, and the immunosuppressive tumor microenvironment, which limit their efficacy. Recent progress in various fields, such as click chemistry, nanotechnology, exosome engineering, and neoantigen design, offer innovative solutions to these challenges. These achievements have led to the emergence of smart vaccine platforms (SVPs), which integrate protective carriers for messenger ribonucleic acid (mRNA) with functionalization strategies to optimize targeted delivery. Click chemistry further enhances SVP performance by improving the encapsulation of mRNA antigens and facilitating their precise delivery to target cells. This review highlights the latest developments in SVP technologies for cancer therapy, exploring both their opportunities and challenges in advancing these transformative approaches.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantabpour
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nima Pourgholam
- School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Arak University, Arak, Iran
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mahsa Ramezanpour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Darestanifarahani
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Polymers, Biopolymers Surfaces (PBS) Laboratory, National Center for Scientific Research (CNRS) Mixed Research Unit (UMR) 6270, University Rouen Normandie, Rouen, France
| |
Collapse
|
2
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Mas-Rosario JA, Medor JD, Jeffway MI, Martínez-Montes JM, Farkas ME. Murine macrophage-based iNos reporter reveals polarization and reprogramming in the context of breast cancer. Front Oncol 2023; 13:1151384. [PMID: 37091169 PMCID: PMC10113556 DOI: 10.3389/fonc.2023.1151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
As part of the first line of defense against pathogens, macrophages possess the ability to differentiate into divergent phenotypes with varying functions. The process by which these cells change their characteristics, commonly referred to as macrophage polarization, allows them to change into broadly pro-inflammatory (M1) or anti-inflammatory (M2) subtypes, and depends on the polarizing stimuli. Deregulation of macrophage phenotypes can result in different pathologies or affect the nature of some diseases, such as cancer and atherosclerosis. Therefore, a better understanding of macrophage phenotype conversion in relevant models is needed to elucidate its potential roles in disease. However, there are few existing probes to track macrophage changes in multicellular environments. In this study, we generated an eGFP reporter cell line based on inducible nitric oxide synthase (iNos) promoter activity in RAW264.7 cells (RAW:iNos-eGFP). iNos is associated with macrophage activation to pro-inflammatory states and decreases in immune-suppressing ones. We validated the fidelity of the reporter for iNos following cytokine-mediated polarization and confirmed that reporter and parental cells behaved similarly. RAW:iNos-eGFP cells were then used to track macrophage responses in different in vitro breast cancer models, and their re-education from anti- to pro-inflammatory phenotypes via a previously reported pyrimido(5,4-b)indole small molecule, PBI1. Using two mouse mammary carcinoma cell lines, 4T1 and EMT6, effects on macrophages were assessed via conditioned media, two-dimensional/monolayer co-culture, and three-dimensional spheroid models. While conditioned media derived from 4T1 or EMT6 cells and monolayer co-cultures of each cancer cell line with RAW:iNos-eGFP cells all resulted in decreased fluorescence, the trends and extents of effects differed. We also observed decreases in iNos-eGFP signal in the macrophages in co-culture assays with 4T1- or EMT6-based spheroids. We then showed that iNos production is enhanced in these cancer models using PBI1, tracking increased fluorescence. Collectively, this work demonstrates that this reporter-based approach provides a facile means to study macrophage responses in complex, multicomponent environments. Beyond the initial studies presented here, this platform can be used with a variety of in vitro models and extended to in vivo applications with intravital imaging.
Collapse
Affiliation(s)
- Javier A. Mas-Rosario
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Ahmerst, MA, United States
| | - Josue D. Medor
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Ahmerst, MA, United States
| | - Mary I. Jeffway
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Ahmerst, MA, United States
| | - José M. Martínez-Montes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Ahmerst, MA, United States
| | - Michelle E. Farkas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Ahmerst, MA, United States
- Department of Chemistry, University of Massachusetts Amherst, Ahmerst, MA, United States
| |
Collapse
|
4
|
Canella A, Rajappa P. Therapeutic utility of engineered myeloid cells in the tumor microenvironment. Cancer Gene Ther 2023:10.1038/s41417-023-00600-7. [PMID: 36854896 DOI: 10.1038/s41417-023-00600-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Despite promising results shown in hematologic tumors, immunotherapies for the treatment of solid tumors have mostly failed so far. The immunosuppressive tumor microenvironment and phenotype of tumor infiltrating macrophages are among the more prevalent reasons for this failure. Tumor associated macrophages (TAMs, M2-macrophages) are circulating myeloid cells recruited to the local tumor microenvironment, and together with regulatory T cells (T-regs), are reprogrammed to become immune suppressive. This results in the inactivation or hampered recruitment of cytotoxic CD8 + T and Natural Killer (NK) cells. Recently, attempts have been made to try to leverage specific myeloid functions and properties, including their ability to reach the TME and to mediate the phagocytosis of cancer cells. Additionally, myeloid cells have been used for drug delivery and reprogramming the tumor microenvironment in cancer patients. This approach, together with the advancements in genome editing, paved the way for the development of novel cell-mediated immunotherapies. This article focuses on the latest studies that detail the therapeutic properties of genetically engineered or pharmacologically modulated myeloid cells in cancer preclinical models, limitations, pitfalls, and evaluations of these approaches in patients with cancer.
Collapse
Affiliation(s)
- Alessandro Canella
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Sapach AY, Sindeeva OA, Nesterchuk MV, Tsitrina AA, Mayorova OA, Prikhozhdenko ES, Verkhovskii RA, Mikaelyan AS, Kotelevtsev YV, Sukhorukov GB. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51579-51592. [PMID: 36367877 DOI: 10.1021/acsami.2c12004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 μm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 μg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 μm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
Collapse
Affiliation(s)
- Anastasiia Yu Sapach
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Sechenov First State Medical University, Moscow 119991, Russia
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
| | | | - Alexandra A Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Siberian State Medical University, Tomsk 634050, Russia
- Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
6
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
7
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Das R, Hardie J, Joshi BP, Zhang X, Gupta A, Luther DC, Fedeli S, Farkas ME, Rotello VM. Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells. JACS AU 2022; 2:1679-1685. [PMID: 35911454 PMCID: PMC9327086 DOI: 10.1021/jacsau.2c00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Macrophages migrate to tumor sites by following chemoattractant gradients secreted by tumor cells, providing a truly active targeting strategy for cancer therapy. However, macrophage-based delivery faces challenges of cargo loading, control of release, and effects of the payload on the macrophage vehicle. We present a strategy that employs bioorthogonal "nanozymes" featuring transition metal catalysts (TMCs) to provide intracellular "factories" for the conversion of prodyes and prodrugs into imaging agents and chemotherapeutics. These nanozymes solubilize and stabilize the TMCs by embedding them into self-assembled monolayer coating gold nanoparticles. Nanozymes delivered into macrophages were intracellularly localized and retained activity even after prolonged (72 h) incubation. Significantly, nanozyme-loaded macrophages maintained their inherent migratory ability toward tumor cell chemoattractants, efficiently killing cancer cells in cocultures. This work establishes the potential of nanozyme-loaded macrophages for tumor site activation of prodrugs, providing readily tunable dosages and delivery rates while minimizing off-target toxicity of chemotherapeutics.
Collapse
|
9
|
Yang L, Zhang Y, Zhang Y, Xu Y, Li Y, Xie Z, Wang H, Lin Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Live Macrophage-Delivered Doxorubicin-Loaded Liposomes Effectively Treat Triple-Negative Breast Cancer. ACS NANO 2022; 16:9799-9809. [PMID: 35678390 DOI: 10.1021/acsnano.2c03573] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triple-negative breast cancer is often aggressive and resistant to various cancer therapies, especially corresponding targeted drugs. It is shown that targeted delivery of chemotherapeutic drugs to tumor sites could enhance treatment outcome against triple-negative breast cancer. In this study, we exploited the active tumor-targeting capability of macrophages by loading doxorubicin-carrying liposomes on their surfaces via biotin-avidin interactions. Compared with conventional liposomes, this macrophage-liposome (MA-Lip) system further increased doxorubicin accumulation in tumor sites, penetrated deeper into tumor tissue, and enhanced antitumor immune response. As a result, the MA-Lip system significantly lengthened the survival rate of 4T1 cell-bearing mice with low toxicity. Besides, the MA-Lip system used highly biocompatible and widely approved materials, which ensured its long-term safety. This study provides a system for triple-negative breast cancer treatment and offers another macrophage-based strategy for tumor delivery.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuai Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
10
|
Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells Int 2021; 2021:8502021. [PMID: 34603454 PMCID: PMC8481068 DOI: 10.1155/2021/8502021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Achievement of high targeting efficiency for a drug delivery system remains a challenge of tumor diagnoses and nonsurgery therapies. Although nanoparticle-based drug delivery systems have made great progress in extending circulation time, improving durability, and controlling drug release, the targeting efficiency remains low. And the development is limited to reducing side effects since overall survival rates are mostly unchanged. Therefore, great efforts have been made to explore cell-driven drug delivery systems in the tumor area. Cells, particularly those in the blood circulatory system, meet most of the demands that the nanoparticle-based delivery systems do not. These cells possess extended circulation times and innate chemomigration ability and can activate an immune response that exerts therapeutic effects. However, new challenges have emerged, such as payloads, cell function change, cargo leakage, and in situ release. Generally, employing cells from the blood circulatory system as cargo carriers has achieved great benefits and paved the way for tumor diagnosis and therapy. This review specifically covers (a) the properties of red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, and mesenchymal stem cells; (b) the loading strategies to balance cargo amounts and cell function balance; (c) the cascade strategies to improve cell-driven targeting delivery efficiency; and (d) the features and applications of cell membranes, artificial cells, and extracellular vesicles in cancer treatment.
Collapse
|
11
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
12
|
Bagheri Y, Chedid S, Shafiei F, Zhao B, You M. A quantitative assessment of the dynamic modification of lipid-DNA probes on live cell membranes. Chem Sci 2019; 10:11030-11040. [PMID: 32055389 PMCID: PMC7003967 DOI: 10.1039/c9sc04251b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic lipid-DNA probes have recently attracted much attention for cell membrane analysis, transmembrane signal transduction, and regulating intercellular networks. These lipid-DNA probes can spontaneously insert onto plasma membranes simply after incubation. The highly precise and controllable DNA interactions have further allowed the programmable manipulation of these membrane-anchored functional probes. However, we still have quite limited understanding of how these lipid-DNA probes interact with cell membranes and also what parameters determine this process. In this study, we have systematically studied the dynamic process of cell membrane modification with a group of lipid-DNA probes. Our results indicated that the hydrophobicity of the lipid-DNA probes is strongly correlated with their membrane insertion and departure rates. Most cell membrane insertion stems from the monomeric form of probes, rather than the aggregates. Lipid-DNA probes can be removed from cell membranes through either endocytosis or direct outflow into the solution. As a result, long-term probe modifications on cell membranes can be realized in the presence of excess probes in the solution and/or endocytosis inhibitors. For the first time, we have successfully improved the membrane persistence of lipid-DNA probes to more than 24 h. Our quantitative data have dramatically improved our understanding of how lipid-DNA probes dynamically interact with cell membranes. These results can be further used to allow a broad range of applications of lipid-DNA probes for cell membrane analysis and regulation.
Collapse
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Sara Chedid
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Fatemeh Shafiei
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Bin Zhao
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| | - Mingxu You
- Department of Chemistry , University of Massachusetts , Amherst , MA 01003 , USA . ;
| |
Collapse
|
13
|
Sugimoto S, Iwasaki Y. Surface Modification of Macrophages with Nucleic Acid Aptamers for Enhancing the Immune Response against Tumor Cells. Bioconjug Chem 2018; 29:4160-4167. [PMID: 30395444 DOI: 10.1021/acs.bioconjchem.8b00793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antigen-presenting cells play a dominant role in cancer immunotherapy. Tumor cells, however, can still resort to several mechanisms of immune evasion that ultimately lead to the development of tumor tissues. In the current study, we performed surface modification of live macrophages with nucleic acid aptamers with the aim to enhance their affinity for tumor cells. Intercellular adhesion of tumor cells to surface-modified macrophages and the functions of the macrophages when in contact with tumor cells were investigated. To immobilize thiol-terminated nucleic acid aptamers that showed high affinity for the membrane protein of the tumor cells, methacryloyl groups were delivered into the sialic acids of the macrophages via metabolic glycoengineering (MGE). The proposed surface modification was cytocompatible and did not induce any undesirable activation of macrophages. According to the cell proliferation assay, the density of aptamers immobilized on a macrophage was found to decrease over time. However, the presence of aptamers on the cell surface was observed for more than 24 h after the immobilization. The number of adherent tumor cells on aptamer-immobilized macrophages was significantly larger than that of non-immobilized macrophages. Although the number of adherent tumor cells on aptamer-immobilized macrophages was not influenced by the pretreatment of doxorubicin to induce apoptosis in tumor cells, the apoptosis-induced tumor cells were highly phagocytosed by the aptamer-immobilized macrophages. The secretion amount of proinflammatory cytokines (TNF-α and IL-12) from the macrophages was coincident with the phagocytic index, which increased with the phagocytic uptake of tumor cells by the macrophages. In addition, the expression level of the major histocompatibility complex (MHC) class I and II molecules, required for antigen presentation, increased in nucleic acid aptamer-immobilized macrophages. Overall, the surface modification of macrophages with nucleic acid aptamers improved the tumor cell recognition of macrophages, indicating that the combination of cell surface engineering and anticancer drug treatment could constitute a promising strategy for tumor cell elimination.
Collapse
Affiliation(s)
- Shunsuke Sugimoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| |
Collapse
|