1
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Guan L, Wang H, Xu X, Fan H. Therapeutical Utilization and Repurposing of Artemisinin and Its Derivatives: A Narrative Review. Adv Biol (Weinh) 2023; 7:e2300086. [PMID: 37178448 DOI: 10.1002/adbi.202300086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Artemisinin (ART) and its derivatives have great therapeutical utility as antimalarials and can be repurposed for other indications, such as viral infections, autoimmune diseases, and cancer. This review presents a comprehensive overview of the therapeutic effects of ART-based drugs, beyond their antimalarial effects. This review also summarizes the information on their repurposing in other pathologies, with the hope that it will guide the future optimization of the use of ART-based drugs and of the treatment strategies for the listed diseases. By reviewing related literature, ART extraction and structure as well as the synthesis and structure of its derivatives are presented. Subsequently, the traditional roles of ART and its derivatives against malaria are reviewed, including antimalarial mechanism and occurrence of antimalarial resistance. Finally, the potential of ART and its derivatives to be repurposed for the treatment of other diseases are summarized. The great repurposing potential of ART and its derivatives may be useful for the control of emerging diseases with corresponding pathologies, and future research should be directed toward the synthesis of more effective derivatives or better combinations.
Collapse
Affiliation(s)
- Lin Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huiyong Wang
- Wuhan Humanwell Pharmaceutical Co. Ltd., Wuhan, 430206, P. R. China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, P. R. China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Hemachudha P, Pongpitakmetha T, Rattanawong W, Thanapornsungsuth P, Joyjinda Y, Bunprakob S, Ruchisrisarod C, Hemachudha T. A case of successive development of possible acute necrotizing encephalopathy after COVID-19 pneumonia. SAGE Open Med Case Rep 2022; 10:2050313X221083653. [PMID: 35308052 PMCID: PMC8928348 DOI: 10.1177/2050313x221083653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/09/2022] [Indexed: 02/03/2023] Open
Abstract
COVID-19 infection often results in an excessive inflammatory response with a spectrum of neurological manifestations. Here, we describe an 81-year-old female with severe COVID-19 pneumonia and subsequent alteration of consciousness after high-dose intravenous dexamethasone and remdesivir. A non-contrast head computed tomography (CT) demonstrated bilateral hypodensities involving bilateral cerebellar hemispheres, thalami, cerebral peduncles and medial parieto-occipital areas. There was no improvement and repeat CT showed progression with findings suggestive of acute necrotizing encephalopathy. Interleukin-6 levels were initially normal; however, subsequent levels were found to be markedly elevated. Acute necrotizing encephalopathy associated with COVID-19 may occur in the setting of severe pneumonia and may represent an immune-mediated process involving inflammatory cytokines such as interleukin-6.
Collapse
Affiliation(s)
- Pasin Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| | - Thanakit Pongpitakmetha
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanakorn Rattanawong
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Poosanu Thanapornsungsuth
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yutthana Joyjinda
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saowalak Bunprakob
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Wang X, Du H, Li X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int Immunopharmacol 2021; 102:108413. [PMID: 34891003 DOI: 10.1016/j.intimp.2021.108413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
OBJECT Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
5
|
Kamarauskaite J, Baniene R, Raudone L, Vilkickyte G, Vainoriene R, Motiekaityte V, Trumbeckaite S. Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood ( Artemisia absinthium L.) and Silver Wormwood ( Artemisia ludoviciana Nutt.). Antioxidants (Basel) 2021; 10:antiox10091405. [PMID: 34573037 PMCID: PMC8469600 DOI: 10.3390/antiox10091405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Caffeoylquinic acids are some of the chemophenetically significant specialized metabolites found in plants of the family Asteraceae Dumort., possessing a broad spectrum of biological activities. As they might be potential mitochondria-targeted antioxidants, effective preparation methods—including extraction, isolation, and purification of caffeoylquinic acids from plant sources—are in great demand. The aim of this study was to fractionate the caffeoylquinic acids from cultivated wormwood (Artemisia absinthium L.) and silver wormwood (Artemisia ludoviciana Nutt.) herb acetone extracts and evaluate their phytochemical profiles, antioxidant activity (radical scavenging and reducing activities), effects on kidney mitochondrial functions, and cytochrome-c-reducing properties. The main findings of our study are as follows: (1) Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts are rich in monocaffeoylquinic acids (chlorogenic acid, neochlorogenic acid, 4-O-caffeoylquinic acid), while methanolic fractions purified from wormwood and silver wormwood herb acetone extracts are rich in dicaffeoylquinic acids (4,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid). Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts were solely composed of monocaffeoylquinic acids. Methanolic fractions purified from wormwood and silver wormwood herb acetone extracts contained only dicaffeoylquinic acids. (2) Fractions purified from silver wormwood herb acetone extracts stood out as having the greatest content of caffeoylquinic acids. (3) The greatest radical scavenging activity was determined in the dicaffeoylquinic-acid-rich fraction purified from silver wormwood herb acetone extract; the greatest reducing activity was determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. (4) The effect of both fractions on mitochondrial functions was dose-dependent; lower concentrations of caffeoylquinic-acid-rich fractions had no effect on mitochondrial functions, whereas higher concentrations of caffeoylquinic-acid-rich fractions reduced the state 3 respiration rate (with the complex-I-dependent substrate glutamate/malate). (5) Both monocaffeoylquinic- and dicaffeoylquinic-acid-rich fractions possessed cytochrome-c-reducing properties; the greatest cytochrome c reduction properties were determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. In summary, these findings show that caffeoylquinic acids might be beneficial as promising antioxidant and cytochrome-c-reducing agents for the modulation of mitochondria and treatment of various mitochondrial-pathway-associated pathologies.
Collapse
Affiliation(s)
- Justina Kamarauskaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-62663418
| | - Rasa Baniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| | - Lina Raudone
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Rimanta Vainoriene
- Institute of Regional Development, Vilnius University Siauliai Academy, Vytauto Str. 84, LT-76352 Siauliai, Lithuania;
| | - Vida Motiekaityte
- Faculty of Public Governance and Business, Mykolas Romeris University, Ateities Str. 20, LT-08303 Vilnius, Lithuania;
| | - Sonata Trumbeckaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
6
|
Uckun FM, Saund S, Windlass H, Trieu V. Repurposing Anti-Malaria Phytomedicine Artemisinin as a COVID-19 Drug. Front Pharmacol 2021; 12:649532. [PMID: 33815126 PMCID: PMC8017220 DOI: 10.3389/fphar.2021.649532] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Artemisinin is an anti-inflammatory phytomedicine with broad-spectrum antiviral activity. Artemisinin and its antimalarial properties were discovered by the Chinese scientist Tu Youyu, who became one of the laureates of the 2015 Nobel Prize in Physiology or Medicine for this breakthrough in tropical medicine. It is a commonly used anti-malaria drug. Artemisinin has recently been repurposed as a potential COVID-19 drug. Its documented anti-SARS-CoV-2 activity has been attributed to its ability to inhibit spike-protein mediated and TGF-β-dependent early steps in the infection process as well as its ability to disrupt the post-entry intracellular events of the SARS-CoV-2 infection cycle required for viral replication. In addition, Artemisinin has anti-inflammatory activity and reduces the systemic levels of inflammatory cytokines that contribute to cytokine storm and inflammatory organ injury in high-risk COVID-19 patients. We postulate that Artemisinin may prevent the worsening of the health condition of patients with mild-moderate COVID-19 when administered early in the course of their disease.
Collapse
Affiliation(s)
| | - Saran Saund
- Oncotelic Inc., Agoura Hills, CA, United States
| | | | - Vuong Trieu
- Oncotelic Inc., Agoura Hills, CA, United States
| |
Collapse
|