1
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
2
|
Sun Y, Wang X, Zhang X, Li Y, Wang D, Sun F, Wang C, Shi Z, Yang X, Yang Z, Wei H, Song Y, Qing G. Di-caffeoylquinic acid: a potential inhibitor for amyloid-beta aggregation. J Nat Med 2024; 78:1029-1043. [PMID: 38926328 DOI: 10.1007/s11418-024-01825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) remains a challenging neurodegenerative disorder with limited therapeutic success. Traditional Chinese Medicine (TCM), as a promising new source for AD, still requires further exploration to understand its complex components and mechanisms. Here, focused on addressing Aβ (1-40) aggregation, a hallmark of AD pathology, we employed a Thioflavin T fluorescence labeling method for screening the active molecular library of TCM which we established. Among the eight identified, 1,3-di-caffeoylquinic acid emerged as the most promising, exhibiting a robust binding affinity with a KD value of 26.7 nM. This study delves into the molecular intricacies by utilizing advanced techniques, including two-dimensional (2D) 15N-1H heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and molecular docking simulations. These analyses revealed that 1,3-di-caffeoylquinic acid disrupts Aβ (1-40) self-aggregation by interacting with specific phenolic hydroxyl and amino acid residues, particularly at Met-35 in Aβ (1-40). Furthermore, at the cellular level, the identified compounds, especially 1,3-di-caffeoylquinic acid, demonstrated low toxicity and exhibited therapeutic potential by regulating mitochondrial membrane potential, reducing cell apoptosis, and mitigating Aβ (1-40)-induced cellular damage. This study presents a targeted exploration of catechol compounds with implications for effective interventions in AD and sheds light on the intricate molecular mechanisms underlying Aβ (1-40) aggregation disruption.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xue Wang
- Shandong Dongyue Polymer Materials Co., Ltd, Shandong, 256400, China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Cunli Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenqiang Shi
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xindi Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiying Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haijie Wei
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanling Song
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, National Chromatographic R. & A. Center, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
3
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
7
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Harrison K, Mackay AS, Kambanis L, Maxwell JWC, Payne RJ. Synthesis and applications of mirror-image proteins. Nat Rev Chem 2023; 7:383-404. [PMID: 37173596 DOI: 10.1038/s41570-023-00493-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
The homochirality of biomolecules in nature, such as DNA, RNA, peptides and proteins, has played a critical role in establishing and sustaining life on Earth. This chiral bias has also given synthetic chemists the opportunity to generate molecules with inverted chirality, unlocking valuable new properties and applications. Advances in the field of chemical protein synthesis have underpinned the generation of numerous 'mirror-image' proteins (those comprised entirely of D-amino acids instead of canonical L-amino acids), which cannot be accessed using recombinant expression technologies. This Review seeks to highlight recent work on synthetic mirror-image proteins, with a focus on modern synthetic strategies that have been leveraged to access these complex biomolecules as well as their applications in protein crystallography, drug discovery and the creation of mirror-image life.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucas Kambanis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Wang C, Yang Y, Zhang X, Shi Z, Gao H, Zhong M, Fan Y, Zhang H, Liu B, Qing G. Secreted endogenous macrosomes reduce Aβ burden and ameliorate Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eade0293. [PMID: 37235655 DOI: 10.1126/sciadv.ade0293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Innovative therapeutic strategies are urgently needed for Alzheimer's disease (AD) due to the increasing size of the aging population and the lack of effective drug treatment. Here, we report the therapeutic effects of extracellular vesicles (EVs) secreted by microglia, including macrosomes and small EVs, on AD-associated pathology. Macrosomes strongly inhibited β-amyloid (Aβ) aggregation and rescued cells from Aβ misfolding-induced cytotoxicity. Furthermore, macrosome administration reduced Aβ plaques and ameliorated cognitive impairment in mice with AD. In contrast, small EVs slightly promoted Aβ aggregation and did not improve AD pathology. Proteomic analysis of small EVs and macrosomes revealed that macrosomes harbor several important neuroprotective proteins that inhibit Aβ misfolding. In particular, the small integral membrane protein 10-like protein 2B in macrosomes has been shown to inhibit Aβ aggregation. Our observations provide an alternative therapeutic strategy for the treatment of AD over conventional ineffective drug treatments.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yiming Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yonggang Fan
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, 110122, P. R. China
| | - Hongyan Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
10
|
Mandal S, Jana D, Dolai J, Sarkar AK, Ghorai BK, Jana NR. Biodegradable Poly(trehalose) Nanoparticle for Preventing Amyloid Beta Aggregation and Related Neurotoxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37167565 DOI: 10.1021/acsabm.2c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Trehalose is a disaccharide that is capable of inhibiting protein aggregation and activating cellular autophagy. It has been shown that a polymer or nanoparticle form, terminated with multiple trehalose units, can significantly enhance the anti-amyloidogenic performance and is suitable for the treatment of neurodegenerative diseases. Here, we report a trehalose-conjugated polycarbonate-co-lactide polymer and formulation of its nanoparticles having multiple numbers of trehalose exposed on the surface. The resultant poly(trehalose) nanoparticle inhibits the aggregation of amyloid beta peptides and disintegrates matured amyloid fibrils into smaller fragments. Moreover, the poly(trehalose) nanoparticle lowers extracellular amyloid β oligomer-driven cellular stress and enhances cell viability. The presence of biodegradable polycarbonate components in the poly(trehalose) nanoparticle would enhance their application potential as an anti-amyloidogenic material.
Collapse
Affiliation(s)
- Suman Mandal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Debabrata Jana
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Binay K Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
11
|
Liu T, Xie Q, Dong Z, Peng Q. Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. NANOTECHNOLOGY 2022; 33. [PMID: 35917704 DOI: 10.1088/1361-6528/ac85f3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have become severe health concern worldwide. The treatment of the CNS diseases is of great challenges due largely to the presence of the blood-brain barrier (BBB). On the one hand, BBB protects brain from the harmful exogenous molecules via inhibiting their entry into the brain. On the other hand, it also hampers the transport of therapeutic drugs into the brain, resulting in the difficulties in treating the CNS diseases. In the past decades, nanoparticles-based drug delivery systems have shown great potentials in overcoming the BBB owing to their unique physicochemical properties, such as small size and specific morphology. In addition, functionalization of nanomaterials confers these nanocarriers controlled drug release features and targeting capacities. These properties make nanocarriers the potent delivery systems for treating the CNS disorders. Herein, we summarize the recent progress in nanoparticles-based systems for the CNS delivery, including the conventional and innovative systems. The prerequisites, drawbacks and challenges of nanocarriers (such as protein corona formation) in the CNS delivery are also discussed.
Collapse
Affiliation(s)
- Tianyou Liu
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qinglian Xie
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, CHINA
| |
Collapse
|
12
|
Wang X, Gao H, Zhang X, Qian S, Wang C, Deng L, Zhong M, Qing G. Aspartic Acid-Modified Phospholipids Regulate Cell Response and Rescue Memory Deficits in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022; 13:2154-2163. [PMID: 35818957 DOI: 10.1021/acschemneuro.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Misfolding and accumulation of amyloid-β (Aβ) to form senile plaques are the main neuropathological signatures of Alzheimer's disease (AD). Decreasing Aβ production, inhibiting Aβ aggregation, and clearing Aβ plaques are thus considered an important strategy for AD treatment. However, numerous drugs cannot enter the AD clinical trials due to unsatisfactory biocompatibility, poor blood-brain barrier penetration, little biomarker impact, and/or low therapeutic indicators. Here, a pair of chiral aspartic acid-modified 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (l- and d-Asp-DPPE) are prepared to build stabilized chiral liposomes. We find that both l- and d-liposomes are able to rescue Aβ aggregation-induced apoptosis, oxidative stress, and calcium homeostasis, in which the effect of d-liposomes is more obvious than that of l-ones. Furthermore, in AD model mice (APPswe/PS1d9 double-transgenic mice), chiral liposomes not only show biosafety but also strongly improve cognitive deficits and reduce Aβ deposition in the brain. Our results suggest that chiral liposomes, particularly, d-liposomes, could be a potential therapeutic approach for AD treatment. This study opens new horizons by showing that liposomes will be used for drug development in addition to delivery and targeting functions.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shengxu Qian
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lijing Deng
- Department of Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
13
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Yan X, Pan Y, Ji L, Gu J, Hu Y, Xia Y, Li C, Zhou X, Yang D, Yu Y. Multifunctional Metal-Organic Framework as a Versatile Nanoplatform for Aβ Oligomer Imaging and Chemo-Photothermal Treatment in Living Cells. Anal Chem 2021; 93:13823-13834. [PMID: 34609144 DOI: 10.1021/acs.analchem.1c02459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the close association of β-amyloid oligomers (AβO) with the clinical development of Alzheimer's disease (AD) symptoms, it is urgent to design a promising sensing and therapeutic strategy that can target AβO for preventing or delaying the onset of AD. Herein, a core-shell nanocomposite CeONP-Res-PCM@ZIF-8/polydopamine (PDA) was synthesized through an in situ encapsulated strategy, in which resveratrol (Res), ceria nanoparticles (CeONPs), and PCM (tetradecanol) were embedded into the ZIF-8/PDA matrix via a water-based mild approach. Using the AβO aptamer, the ability of CeONP-Res-PCM@ZIF-8/PDA/Apt as the fluorescent sensing platform for AβO detection and intracellular imaging was demonstrated. The nanocomposite was high in Res loading (27.5%) and could be activated to release the encapsulated Res upon illumination with NIR through PCM regulation. Moreover, due to the synergetic interactions of PDA, CeONPs, and Res in one system, CeONP-Res-PCM@ZIF-8/PDA/Apt nanocomposites exhibited multifunctional effects on inhibiting Aβ aggregation, degrading Aβ fibrils, and alleviating Aβ-induced oxidative stress and neural apoptosis. These therapeutic effects could be enhanced under NIR irradiation by virtue of the excellent photothermal property of PDA. As far as we know, there is no report of using ZIF-8-based materials for simultaneous sensing and therapeutic applications. This work boosted the development of multifunctional nanoagents for biomedical research studies.
Collapse
Affiliation(s)
- Xueyan Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai 200025, P. R. China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Jinyu Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yuanyuan Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, Guangdong, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
15
|
Zhang X, Zhang X, Zhong M, Zhao P, Guo C, Li Y, Xu H, Wang T, Gao H. A Novel Cu(II)-Binding Peptide Identified by Phage Display Inhibits Cu 2+-Mediated Aβ Aggregation. Int J Mol Sci 2021; 22:6842. [PMID: 34202166 PMCID: PMC8269028 DOI: 10.3390/ijms22136842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Copper (Cu) has been implicated in the progression of Alzheimer's disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| |
Collapse
|