1
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
2
|
Xiang J, Chen J, Liu Y, Ye H, Han Y, Li P, Gao M, Huang Y. Tannic acid as a biphasic modulator of tau protein liquid-liquid phase separation. Int J Biol Macromol 2024; 275:133578. [PMID: 38960272 DOI: 10.1016/j.ijbiomac.2024.133578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Tannic acid (TA) is a natural polyphenol that shows great potential in the field of biomedicine due to its anti-inflammatory, anti-oxidant, anti-bacterial, anti-tumor, anti-virus, and neuroprotective activities. Recent studies have revealed that liquid-liquid phase separation (LLPS) is closely associated with protein aggregation. Therefore, modulating LLPS offers new insights into the treatment of neurodegenerative diseases. In this study, we investigated the influence of TA on the LLPS of the Alzheimer's-related protein tau and the underlying mechanism. Our findings indicate that TA affects the LLPS of tau in a biphasic manner, with initial promotion and subsequent suppression as the TA to tau molar ratio increases. TA modulates tau phase separation through a combination of hydrophobic interactions and hydrogen bonds. The balance between TA-tau and tau-tau interactions is found to be relevant to the material properties of TA-induced tau condensates. We further illustrate that the modulatory activity of TA in phase separation is highly dependent on the target proteins. These findings enhance our understanding of the forces driving tau LLPS under different conditions, and may facilitate the identification and optimization of compounds that can rationally modulate protein phase transition in the future.
Collapse
Affiliation(s)
- Jiani Xiang
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanqing Liu
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
3
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, Kumar A, Cantu-Herrera E, Lyndin M, Sikora K, Alexiou A, Bilgrami AL, Al-Ghamdi KM, Perveen A, Papadakis M, Ashraf GM. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors 2024; 50:693-708. [PMID: 38226733 DOI: 10.1002/biof.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | - Wireko Andrew Awuah
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | | | - Jacob Kalmanovich
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Megan Ariel Coghlan
- University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | | | | | - Akinchita Kumar
- Lincoln Memorial University-DeBusk College of Osteopathic Medicine Harrogate, Harrogate, Tennessee, United States
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- AFNP Med, Wien, Austria
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Islam M, Shen F, Regmi D, Petersen K, Karim MRU, Du D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J Cell Physiol 2024; 239:e30853. [PMID: 35980344 PMCID: PMC9938090 DOI: 10.1002/jcp.30853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Abnormal deposition of tau in neurons is a hallmark of Alzheimer's disease and several other neurodegenerative disorders. In the past decades, extensive efforts have been made to explore the mechanistic pathways underlying the development of tauopathies. Recently, the discovery of tau droplet formation by liquid-liquid phase separation (LLPS) has received a great deal of attention. It has been reported that tau condensates have a biological role in promoting and stabilizing microtubule (MT) assembly. Furthermore, it has been hypothesized that the transition of phase-separated tau droplets to a gel-like state and then to fibrils is associated with the pathology of neurodegenerative diseases. In this review, we outline LLPS, the structural disorder that facilitates tau droplet formation, the effects of posttranslational modification of tau on condensate formation, the physiological function of tau droplets, the pathways from droplet to toxic fibrils, and the therapeutic strategies for tauopathies that might evolve from toxic droplets. We expect a deeper understanding of tau LLPS will provide additional insights into tau physiology and tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Katherine Petersen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Md Raza Ul Karim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
5
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
7
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Fu Q, Zhang B, Chen X, Chu L. Liquid-liquid phase separation in Alzheimer's disease. J Mol Med (Berl) 2024; 102:167-181. [PMID: 38167731 DOI: 10.1007/s00109-023-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pathological aggregation and misfolding of tau and amyloid-β play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-β (Aβ) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.
Collapse
Affiliation(s)
- Qinggang Fu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Wang F, Zhang Y. Physiology and pharmacological targeting of phase separation. J Biomed Sci 2024; 31:11. [PMID: 38245749 PMCID: PMC10800077 DOI: 10.1186/s12929-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, 2109 Adelbert Road, W309A, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Zhang X, Li H, Ma Y, Zhong D, Hou S. Study liquid-liquid phase separation with optical microscopy: A methodology review. APL Bioeng 2023; 7:021502. [PMID: 37180732 PMCID: PMC10171890 DOI: 10.1063/5.0137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Intracellular liquid-liquid phase separation (LLPS) is a critical process involving the dynamic association of biomolecules and the formation of non-membrane compartments, playing a vital role in regulating biomolecular interactions and organelle functions. A comprehensive understanding of cellular LLPS mechanisms at the molecular level is crucial, as many diseases are linked to LLPS, and insights gained can inform drug/gene delivery processes and aid in the diagnosis and treatment of associated diseases. Over the past few decades, numerous techniques have been employed to investigate the LLPS process. In this review, we concentrate on optical imaging methods applied to LLPS studies. We begin by introducing LLPS and its molecular mechanism, followed by a review of the optical imaging methods and fluorescent probes employed in LLPS research. Furthermore, we discuss potential future imaging tools applicable to the LLPS studies. This review aims to provide a reference for selecting appropriate optical imaging methods for LLPS investigations.
Collapse
Affiliation(s)
| | | | - Yue Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | | | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
11
|
Li P, Chen J, Wang X, Su Z, Gao M, Huang Y. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis 2023; 183:106167. [PMID: 37230179 DOI: 10.1016/j.nbd.2023.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023] Open
Abstract
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Biomolecular condensation involving the cytoskeleton. Brain Res Bull 2023; 194:105-117. [PMID: 36690162 DOI: 10.1016/j.brainresbull.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.
Collapse
|
13
|
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023; 42:111968. [PMID: 36640305 PMCID: PMC9790868 DOI: 10.1016/j.celrep.2022.111968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The leap of retroviruses and coronaviruses from animal hosts to humans has led to two ongoing pandemics and tens of millions of deaths worldwide. Retrovirus and coronavirus nucleocapsid proteins have been studied extensively as potential drug targets due to their central roles in virus replication, among which is their capacity to bind their respective genomic RNAs for packaging into nascent virions. This review focuses on fundamental studies of these nucleocapsid proteins and how their intrinsic abilities to condense through liquid-liquid phase separation (LLPS) contribute to viral replication. Therapeutic targeting of these condensates and methodological advances are also described to address future questions on how phase separation contributes to viral replication.
Collapse
Affiliation(s)
- Bao-An Chau
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Venessa Chen
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alan W Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Departments of Medicine and Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
14
|
Phase separation of the microtubule-associated protein tau. Essays Biochem 2022; 66:1013-1021. [PMID: 36251053 DOI: 10.1042/ebc20220066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
The aggregation and misfolding of the neuronal microtubule-associated protein tau is closely linked to the pathology of Alzheimer's disease and several other neurodegenerative diseases. Recent evidence suggest that tau undergoes liquid-liquid phase separation in vitro and forms or associates with membrane-less organelles in cells. Biomolecular condensation driven by phase separation can influence the biological activities of tau including its ability to polymerize tubulin into microtubules. In addition, the high concentrations that tau can reach in biomolecular condensates provide a mechanism to promote its aggregation and the formation of amyloid fibrils potentially contributing to the pathology of different tauopathies. Here, the authors discuss the role of tau phase separation in physiology and disease.
Collapse
|
15
|
Xu B, Chen J, Liu Y. Curcumin Interacts with α-Synuclein Condensates To Inhibit Amyloid Aggregation under Phase Separation. ACS OMEGA 2022; 7:30281-30290. [PMID: 36061735 PMCID: PMC9434619 DOI: 10.1021/acsomega.2c03534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
The amyloid aggregation of α-synuclein (α-Syn) is highly associated with Parkinson's disease (PD). Discovering α-Syn amyloid inhibitors is one of the strategies for PD therapies. Recent studies suggested that α-Syn undergoes phase separation to accelerate amyloid aggregation. Molecules modulating α-Syn phase separation or transition have the potential to regulate amyloid aggregation. Here, we discovered that curcumin, a small natural molecule, interacts with α-Syn during phase separation. Our study showed that curcumin neither affects the formation of α-Syn condensates nor influences the initial morphology of α-Syn condensates. However, curcumin decreases the fluidity of α-Syn inside the condensates and efficiently inhibits α-Syn from turning into an amyloid. It also inhibits the amyloid aggregations of PD disease-related α-Syn E46K and H50Q mutants under phase separation. Furthermore, curcumin can destabilize preformed α-Syn amyloid aggregates in the condensates. Together, our findings demonstrate that curcumin regulates α-Syn amyloid formation during protein phase separation and reveal that α-Syn amyloid aggregation under phase separation can be modulated by small molecules.
Collapse
|
16
|
Xu B, Mo X, Chen J, Yu H, Liu Y. Myricetin Inhibits α-Synuclein Amyloid Aggregation by Delaying the Liquid-to-Solid Phase Transition. Chembiochem 2022; 23:e202200216. [PMID: 35657723 DOI: 10.1002/cbic.202200216] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Indexed: 11/12/2022]
Abstract
The aggregation of α-synuclein (α-Syn) is a critical pathological hallmark of Parkinson's disease (PD). Prevention of α-Syn aggregation has become a key strategy for treating PD. Recent studies have suggested that α-Syn undergoes liquid-liquid phase separation (LLPS) to facilitate nucleation and amyloid formation. Here, we examined the modulation of α-Syn aggregation by myricetin, a polyhydroxyflavonol compound, under the conditions of LLPS. Unexpectedly, neither the initial morphology nor the phase-separated fraction of α-Syn was altered by myricetin. However, the dynamics of α-Syn condensates decreased upon myricetin binding. Further studies showed that myricetin dose-dependently inhibits amyloid aggregation in the condensates by delaying the liquid-to-solid phase transition. In addition, myricetin could disassemble the preformed α-Syn amyloid aggregates matured from the condensates. Together, our study shows that myricetin inhibits α-Syn amyloid aggregation in the condensates by retarding the liquid-to-solid phase transition and reveals that α-Syn phase transition can be targeted to inhibit amyloid aggregation.
Collapse
Affiliation(s)
- Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, (P. R. China)
| | - Xiaoli Mo
- Biology Department, Clark University 950 Main Street, Worcester, Massachusetts (USA) 01610
| | - Jing Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, (P. R. China)
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, (P. R. China)
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, (P. R. China)
| |
Collapse
|
17
|
Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 2022; 32:611-623. [PMID: 35181198 DOI: 10.1016/j.tcb.2022.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Aggregation of the microtubule-associated protein tau plays a major role in Alzheimer's disease and several other neurodegenerative disorders. An exciting recent development is the finding that, akin to some other proteins associated with neurodegenerative disease, tau has a high propensity to condensate via the mechanism of liquid-liquid phase separation (LLPS). Here, we discuss the evidence for tau LLPS in vitro, the molecular mechanisms of this reaction, and the role of post-translational modifications and pathogenic mutations in tau phase separation. We also discuss recent studies on tau LLPS in cells and the insights these studies provide regarding the link between LLPS and neurodegeneration in tauopathies.
Collapse
|
18
|
Venkatramani A, Mukherjee S, Kumari A, Panda D. Shikonin impedes phase separation and aggregation of tau and protects SH-SY5Y cells from the toxic effects of tau oligomers. Int J Biol Macromol 2022; 204:19-33. [PMID: 35120943 DOI: 10.1016/j.ijbiomac.2022.01.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Tauopathies such as Alzheimer's and Parkinson's diseases involve the abnormal deposition of tau aggregates in the brain and neuronal tissues. We report that a natural naphthoquinone, shikonin, impeded the oligomerization and fibrillization of tau. The compound strongly inhibited heparin, arachidonic acid, and RNA-induced tau aggregation. Atomic force microscopy, dynamic light scattering, SDS-PAGE, and dot blot assays revealed that shikonin diminished tau oligomerization and decreased the mean size of tau oligomers. Transmission electron microscopy and atomic force microscopy analysis further showed that shikonin could suppress tau fibrillization and shorten the tau filaments. Shikonin inhibited tau droplet formation. The compound significantly reduced the aggregation rate of a tryptophan mutant (Y310W-tau) of tau. In addition, shikonin disaggregated preformed tau filaments with a half-maximal disaggregation concentration (DC50) of 6.3 ± 0.4 μM. Pre-treatment of neuroblastoma cells (SH-SY5Y) with shikonin protected the cells from the toxicity induced by tau oligomers and increased their viability. The findings imply that shikonin inhibited several steps in the tau aggregation pathways, especially the early stages, such as liquid-liquid phase separation. Therefore, shikonin is an attractive candidate for developing a therapy against tauopathy.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
19
|
Manganese promotes α-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem 2021; 298:101469. [PMID: 34871547 PMCID: PMC8717548 DOI: 10.1016/j.jbc.2021.101469] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/31/2023] Open
Abstract
α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson’s disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.
Collapse
|
20
|
Mukherjee S, Panda D. Contrasting Effects of Ferric and Ferrous Ions on Oligomerization and Droplet Formation of Tau: Implications in Tauopathies and Neurodegeneration. ACS Chem Neurosci 2021; 12:4393-4405. [PMID: 34783530 DOI: 10.1021/acschemneuro.1c00377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dysregulation of metal homeostasis is reported to enhance the aggregation of tau, a key neuronal microtubule-associated protein. Herein, we found that ferric (Fe3+) ions enhanced tau aggregation. Fe3+ and Al3+ induced tau aggregation while several trivalent metal ions such as Cr3+, La3+, and V3+ had no discernable effect on tau aggregation. Fe3+ reduced the critical concentration of tau required for the liquid-liquid phase separation (LLPS); however, Cr3+, La3+, and V3+ did not affect tau droplet formation. Dynamic light scattering, atomic force microscopic, and transmission electron microscopic analysis suggested that Fe3+ significantly increased the formation of tau oligomers and fibrils. In contrast, Fe2+ neither enhanced tau droplet formation nor increased the heparin-induced aggregation of tau. Using a tryptophan mutant (Y310W-tau) of tau, Fe3+ was found to bind to tau with four times higher affinity than Fe2+. Acrylamide quenching of the tryptophan fluorescence of Y310W-tau, 1-anilino-8-naphthalene sulfonate (ANS) fluorescence experiment, and far-UV circular dichroism analysis indicated that Fe3+ decreased the solvent exposure of the tryptophan residue, perturbed the hydrophobic surface arrangement, and disrupted the secondary structure of tau, respectively. The increase in the β-sheet content and a subsequent decrease in the disordered content of tau due to the binding of Fe3+ may favor tau aggregation. Fe3+ may enhance and stabilize the non-covalent interactions between disordered domains of tau molecules leading to tau aggregation. The data highlighted the relationship between the dysregulation of ferric ions and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
21
|
He Z, You G, Liu Q, Li N. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. Int J Mol Sci 2021; 22:ijms222111931. [PMID: 34769364 PMCID: PMC8584792 DOI: 10.3390/ijms222111931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is an intractable neurodegenerative disease that leads to dementia, primarily in elderly people. The neurotoxicity of amyloid-beta (Aβ) and tau protein has been demonstrated over the last two decades. In line with these findings, several etiological hypotheses of AD have been proposed, including the amyloid cascade hypothesis, the oxidative stress hypothesis, the inflammatory hypothesis, the cholinergic hypothesis, et al. In the meantime, great efforts had been made in developing effective drugs for AD. However, the clinical efficacy of the drugs that were approved by the US Food and Drug Association (FDA) to date were determined only mild/moderate. We recently adopted a vanadium compound bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), which was originally used for curing diabetes mellitus (DM), to treat AD in a mouse model. It was shown that BEOV effectively reduced the Aβ level, ameliorated the inflammation in brains of the AD mice, and improved the spatial learning and memory activities of the AD mice. These finding encouraged us to further examine the mechanisms underlying the therapeutic effects of BEOV in AD. In this review, we summarized the achievement of vanadium compounds in medical studies and investigated the prospect of BEOV in AD and DM treatment.
Collapse
Affiliation(s)
- Zhijun He
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Guanying You
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-(0)755-2653-5432; Fax: +86-(0)755-8671-3951
| |
Collapse
|