1
|
Gumusgoz E, Kasiri S, Youssef I, Verma M, Chopra R, Villarreal Acha D, Wu J, Marriam U, Alao E, Chen X, Guisso DR, Gray SJ, Shah BR, Minassian BA. Focused ultrasound widely broadens AAV-delivered Cas9 distribution and activity. Gene Ther 2025:10.1038/s41434-025-00517-w. [PMID: 39893321 DOI: 10.1038/s41434-025-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Because children have little temporal exposure to environment and aging, most pediatric neurological diseases are inherent, i.e. genetic. Since postnatal neurons and astrocytes are mostly non-replicating, gene therapy and genome editing present enormous promise in child neurology. Unlike in other organs, which are highly permissive to adeno-associated viruses (AAV), the mature blood-brain barrier (BBB) greatly limits circulating AAV distribution to the brain. Intrathecal administration improves distribution but to no more than 20% of brain cells. Focused ultrasound (FUS) opens the BBB transiently and safely. In the present work we opened the hippocampal BBB and delivered a Cas9 gene via AAV9 intrathecally. This allowed brain first-pass, and subsequent vascular circulation and re-entry through the opened BBB. The mouse model used was of Lafora disease, a neuroinflammatory disease due to accumulations of misshapen overlong-branched glycogen. Cas9 was targeted to the gene of the glycogen branch-elongating enzyme glycogen synthase. We show that FUS dramatically (2000-fold) improved hippocampal Cas9 distribution and greatly reduced the pathogenic glycogen accumulations and hippocampal inflammation. FUS is in regular clinical use for other indications. Our work shows that it has the potential to vastly broaden gene delivery or editing along with clearance of corresponding pathologic basis of brain disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ibrahim Youssef
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
- Advanced Imaging Research Center, UTSW Medical Center, Dallas, TX, USA
- Solenic Medical Inc., Addison, TX, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Esther Alao
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bhavya R Shah
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Advanced Neuroscience Imaging Research Lab, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Department of Neurology, UTSW Medical Center, Dallas, TX, USA.
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Shah BR, Tanabe J, Jordan JE, Kern D, Harward SC, Feltrin FS, O'Suilliebhain P, Sharma VD, Maldjian JA, Boutet A, Mattay R, Sugrue LP, Narsinh K, Hetts S, Shah LM, Druzgal J, Lehman VT, Lee K, Khanpara S, Lad S, Kaufmann TJ. State of Practice on Transcranial MR-Guided Focused Ultrasound: A Report from the ASNR Standards and Guidelines Committee and ACR Commission on Neuroradiology Workgroup. AJNR Am J Neuroradiol 2025; 46:2-10. [PMID: 39572202 PMCID: PMC11735448 DOI: 10.3174/ajnr.a8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 01/11/2025]
Abstract
Transcranial focused ultrasound (FUS) is a versatile, MR-guided, incisionless intervention with diagnostic and therapeutic applications for neurologic and psychiatric diseases. It is currently FDA-approved as a thermoablative treatment of essential tremor and Parkinson disease. However, other applications of FUS including BBB opening for diagnostic and therapeutic applications, sonodynamic therapy, histotripsy, and low-intensity focused ultrasound neuromodulation are all in clinical trials. While FUS targeting for essential tremor and Parkinson disease has classically relied on an indirect, landmark-based approach, development of novel, advanced MR imaging techniques such as DTI tractography and fast gray matter acquisition T1 inversion recovery has the potential to improve individualized targeting and thus potentially enhance treatment response, decrease treatment times, and avoid adverse effects. As the technology advances and the number of clinical applications increases, the role of the neuroradiologist on a multidisciplinary team will be essential in pairing advanced structural and functional imaging to further this image-guided procedure via a precision medicine approach. This multi-institutional report, written by an experienced team of neuroradiologists, neurosurgeons, and neurologists, summarizes current practices, the use of advanced imaging techniques for transcranial MR-guided high-intensity FUS, recommendations for clinical implementation, and emerging clinical indications.
Collapse
Affiliation(s)
- Bhavya R Shah
- From the Transcranial Focused Ultrasound Laboratory (B.R.S., F.S.F.), University of Texas Southwestern Medical Center, Dallas, Texas
- Neuroradiology and Neurointervention Section (B.R.S., F.S.F.), University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology (B.R.S., F.S.F., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurological Surgery (B.R.S.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jody Tanabe
- American Society of Neuroradiology Standards and Guidelines Committee (J.T., J.E.J., S.H., L.M.S.), Oak Brook, Illinois
- Department of Neuroradiology (J.T., J.E.J.), University of Colorado School of Medicine, Aurora, Colorado
| | - John E Jordan
- American Society of Neuroradiology Standards and Guidelines Committee (J.T., J.E.J., S.H., L.M.S.), Oak Brook, Illinois
- Providence Little Company of Mary Medical Center (J.E.J.), Torrance, Colorado
- Department of Neuroradiology (J.T., J.E.J.), University of Colorado School of Medicine, Aurora, Colorado
| | - Drew Kern
- Departments of Neurology and Neurosurgery (D.K.), University of Colorado School of Medicine, Aurora, Colorado
| | - Stephen C Harward
- Department of Neurosurgery (S.C.H., S.L.), Duke University Medical Center, Durham, North Carolina
| | - Fabricio S Feltrin
- From the Transcranial Focused Ultrasound Laboratory (B.R.S., F.S.F.), University of Texas Southwestern Medical Center, Dallas, Texas
- Neuroradiology and Neurointervention Section (B.R.S., F.S.F.), University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology (B.R.S., F.S.F., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Padraig O'Suilliebhain
- Department of Neurology (P.O., V.D.S.), Movement Disorder Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vibhash D Sharma
- Department of Neurology (P.O., V.D.S.), Movement Disorder Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph A Maldjian
- Department of Radiology (B.R.S., F.S.F., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandre Boutet
- Department of Neuroradiology (A.B.), University of Toronto Medical Center, Toronto, Ontario, Canada
| | - Raghav Mattay
- Department of Radiology and Biomedical Imaging (R.M., L.P.S., K.N., S.H.), University of California San Francisco, San Francisco, California
| | - Leo P Sugrue
- Department of Radiology and Biomedical Imaging (R.M., L.P.S., K.N., S.H.), University of California San Francisco, San Francisco, California
| | - Kazim Narsinh
- Department of Radiology and Biomedical Imaging (R.M., L.P.S., K.N., S.H.), University of California San Francisco, San Francisco, California
| | - Steven Hetts
- American Society of Neuroradiology Standards and Guidelines Committee (J.T., J.E.J., S.H., L.M.S.), Oak Brook, Illinois
- American College of Radiology Commission on Neuroradiology (S.H., L.M.S.), Reston, Virginia
- Department of Radiology and Biomedical Imaging (R.M., L.P.S., K.N., S.H.), University of California San Francisco, San Francisco, California
| | - Lubdha M Shah
- American Society of Neuroradiology Standards and Guidelines Committee (J.T., J.E.J., S.H., L.M.S.), Oak Brook, Illinois
- American College of Radiology Commission on Neuroradiology (S.H., L.M.S.), Reston, Virginia
- Department of Radiology (L.M.S.), University of Utah, Salt Lake City, Utah
| | - Jason Druzgal
- Department of Radiology (J.D.), University of Virginia, Charlottesville, Virginia
| | - Vance T Lehman
- Department of Radiology (V.T.L., T.J.K.), Mayo Clinic, Rochester, Minnesota
| | - Kendall Lee
- Department of Neurosurgery (K.L., T.J.K.), Mayo Clinic, Rochester, Minnesota
| | - Shekhar Khanpara
- Department of Neuroradiology (S.K.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shivanand Lad
- Department of Neurosurgery (S.C.H., S.L.), Duke University Medical Center, Durham, North Carolina
| | - Timothy J Kaufmann
- Department of Neurosurgery (K.L., T.J.K.), Mayo Clinic, Rochester, Minnesota
- Department of Radiology (V.T.L., T.J.K.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Zaidi M, Ma J, Thomas BP, Peña S, Harrison CE, Chen J, Lin SH, Derner KA, Baxter JD, Liticker J, Malloy CR, Bartnik-Olson B, Park JM. Functional activation of pyruvate dehydrogenase in human brain using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2024; 91:1822-1833. [PMID: 38265104 PMCID: PMC10950523 DOI: 10.1002/mrm.30015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Pyruvate, produced from either glucose, glycogen, or lactate, is the dominant precursor of cerebral oxidative metabolism. Pyruvate dehydrogenase (PDH) flux is a direct measure of cerebral mitochondrial function and metabolism. Detection of [13 C]bicarbonate in the brain from hyperpolarized [1-13 C]pyruvate using carbon-13 (13 C) MRI provides a unique opportunity for assessing PDH flux in vivo. This study is to assess changes in cerebral PDH flux in response to visual stimuli using in vivo 13 C MRS with hyperpolarized [1-13 C]pyruvate. METHODS From seven sedentary adults in good general health, time-resolved [13 C]bicarbonate production was measured in the brain using 90° flip angles with minimal perturbation of its precursors, [1-13 C]pyruvate and [1-13 C]lactate, to test the hypothesis that the appearance of [13 C]bicarbonate signals in the brain reflects the metabolic changes associated with neuronal activation. With a separate group of healthy participants (n = 3), the likelihood of the bolus-injected [1-13 C]pyruvate being converted to [1-13 C]lactate prior to decarboxylation was investigated by measuring [13 C]bicarbonate production with and without [1-13 C]lactate saturation. RESULTS In the course of visual stimulation, the measured [13 C]bicarbonate signal normalized to the total 13 C signal in the visual cortex increased by 17.1% ± 15.9% (p = 0.017), whereas no significant change was detected in [1-13 C]lactate. Proton BOLD fMRI confirmed the regional activation in the visual cortex with the stimuli. Lactate saturation decreased bicarbonate-to-pyruvate ratio by 44.4% ± 9.3% (p < 0.01). CONCLUSION We demonstrated the utility of 13 C MRS with hyperpolarized [1-13 C]pyruvate for assessing the activation of cerebral PDH flux via the detection of [13 C]bicarbonate production.
Collapse
Affiliation(s)
- Maheen Zaidi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Junjie Ma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- GE Precision Healthcare, Jersey City, New Jersey, USA 07302
| | - Binu P. Thomas
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Salvador Peña
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Crystal E. Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Sung-Han Lin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Kelley A. Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeannie D. Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Craig R. Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, Loma Linda, California, USA 92354
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| |
Collapse
|
4
|
Chaumeil M, Guglielmetti C, Qiao K, Tiret B, Ozen M, Krukowski K, Nolan A, Paladini MS, Lopez C, Rosi S. Hyperpolarized 13C metabolic imaging detects long-lasting metabolic alterations following mild repetitive traumatic brain injury. RESEARCH SQUARE 2023:rs.3.rs-3166656. [PMID: 37645937 PMCID: PMC10462249 DOI: 10.21203/rs.3.rs-3166656/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates the potential of metabolic imaging to improve detection, classification and outcome prediction of previously undetected rTBI.
Collapse
Affiliation(s)
| | | | - Kai Qiao
- University of California, San Francisco
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Guglielmetti C, Cordano C, Najac C, Green AJ, Chaumeil MM. Imaging immunomodulatory treatment responses in a multiple sclerosis mouse model using hyperpolarized 13C metabolic MRI. COMMUNICATIONS MEDICINE 2023; 3:71. [PMID: 37217574 PMCID: PMC10202949 DOI: 10.1038/s43856-023-00300-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christian Cordano
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari J Green
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California at San Francisco, CA, San Francisco, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Dynamic 13 C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022; 87:1136-1149. [PMID: 34687086 PMCID: PMC8776582 DOI: 10.1002/mrm.29049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco C. Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crystal E. Harrison
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Edward P. Hackett
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Biochemistry and Chemical Biology, University of Texas Dallas, Richardson, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven M. Wright
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Christopher J. Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Electrical and Computer Engineering, University of Texas Dallas, Richardson, TX, USA,Correspondence to: Jae Mo Park, Ph.D., 5323 Harry Hines Blvd. Dallas, Texas 75390-8568, , Tel: +1-214-645-7206, Fax: +1-214-645-2744
| |
Collapse
|