1
|
Wang J, Li S, Ye J, Yan Y, Liu Q, Jia Q, Jia Y, Wang L. Mesencephalic astrocyte-derived neurotrophic factor (MANF): A novel therapeutic target for chemotherapy-induced peripheral neuropathy via regulation of integrated stress response and neuroinflammation. Neuropharmacology 2025; 268:110342. [PMID: 39909174 DOI: 10.1016/j.neuropharm.2025.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents a severe complication, impacting up to 90% of cancer patients administered with chemotherapeutic agents such as oxaliplatin. The purpose of our study was to examine the potential role and therapeutic efficacy of Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF), given its recognized neuroprotective and immunomodulatory properties in diverse neurological disorders. Utilizing an oxaliplatin-induced CIPN mouse model, we investigated MANF expression in the dorsal root ganglia (DRG) and spinal cord, and evaluated the impacts of AAV-mediated MANF overexpression on CIPN. Our findings revealed substantial downregulation of MANF expression in both the DRG and spinal cord of CIPN inflicted mice, with MANF majorly localized in neurons as opposed to glial cells. Intrathecal administration of AAV-MANF preceding oxaliplatin treatment yielded several beneficial results. MANF overexpression diminished mechanical hypersensitivity and decreased Calcitonin Gene-Related Peptide (CGRP) expression in DRG and the spinal dorsal horn. These enhancements were concomitant with modulation of the integrated stress response (ISR) and neuroinflammation. Intervention with AAV-MANF effectively regulated ISR markers (BiP, CHOP, and p-eIF2α), mitigated activation of microglia and astrocytes in the DRG and spinal dorsal horn, and inhibited NFκB and ERK inflammatory signaling pathways. To conclude, our study underscores the potential of MANF as a viable therapeutic target for CIPN, manifesting its ability to modulate ISR and neuroinflammation. These insights recommend that continued exploration of MANF-centered approaches could facilitate the advancement of more efficacious interventions for this incapacitating chemotherapy complication.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shenghong Li
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jishi Ye
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yafei Yan
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qi Liu
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qiang Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
2
|
Dai P, Wang P, Chen X, Feng S, Wu F, Zheng X, Qin Z. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Restricts Inflammatory Progression through Limiting Macrophage Infiltration in DRG and Sciatic Nerve during Diabetic Peripheral Neuropathy. ACS Chem Neurosci 2025. [PMID: 39970444 DOI: 10.1021/acschemneuro.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication affecting over half of individuals with diabetes. This study investigates the role of mesencephalic Astrocyte-derived neurotrophic factor (MANF) in DPN progression and its potential as a therapeutic target. Using a streptozotocin (STZ)-induced diabetic mouse model, we analyzed MANF expression in the dorsal root ganglia (DRG) and sciatic nerve and assessed the effects of recombinant human MANF (rhMANF) administration on DPN symptoms. Our findings show significant upregulation of MANF protein levels in the DRG of diabetic mice, along with an increased presence of MANF-expressing macrophages in both the DRG and sciatic nerve. Intravenous administration of rhMANF from Day 7 to Day 21 post-STZ injection yielded multiple beneficial outcomes. Notably, rhMANF treatment alleviated mechanical hypoalgesia, as measured by the paw mechanical withdrawal threshold (PMWT), and enhanced sciatic nerve conduction, improving motor nerve conduction velocity (MNCV). Additionally, it increased intradermal nerve density, indicated by more PGP9.5-positive nerve fibers in the plantar skin of treated diabetic mice. These improvements were associated with reduced macrophage infiltration in the DRG and sciatic nerve, marked by fewer CD68 and Iba-1 positive cells, and inhibition of inflammatory signaling pathways. Specifically, rhMANF treatment decreased NF-κB p65 phosphorylation and suppressed p38 MAPK phosphorylation, indicating reduced inflammation. In summary, our research underscores MANF's potential as a novel therapeutic target for DPN, particularly due to its anti-inflammatory properties. Further exploration of MANF could lead to the development of more effective treatments for this debilitating aspect of diabetes.
Collapse
Affiliation(s)
- Peng Dai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xin Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P. R. China
| | - Shuyun Feng
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Fancan Wu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Xueqin Zheng
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
3
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring shared targets in cancer immunotherapy and cancer-induced bone pain: Insights from preclinical studies. Cancer Lett 2024; 611:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Jiang BC, Ling YJ, Xu ML, Gu J, Wu XB, Sha WL, Tian T, Bai XH, Li N, Jiang CY, Chen O, Ma LJ, Zhang ZJ, Qin YB, Zhu M, Yuan HJ, Wu LJ, Ji RR, Gao YJ. Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons. Sci Transl Med 2024; 16:eadi1564. [PMID: 39413164 DOI: 10.1126/scitranslmed.adi1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor-β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor-1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yue-Juan Ling
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Tian Tian
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xue-Hui Bai
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Chang-Yu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Ouyang Chen
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yi-Bin Qin
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meixuan Zhu
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jie Yuan
- Department of Pain Management, Nantong Hospital of Traditional Chinese Medicine, Jiangsu 226001, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| |
Collapse
|
5
|
Hou L, Ma J, Feng X, Chen J, Dong BH, Xiao L, Zhang X, Guo B. Caffeic acid and diabetic neuropathy: Investigating protective effects and insulin-like growth factor 1 (IGF-1)-related antioxidative and anti-inflammatory mechanisms in mice. Heliyon 2024; 10:e32623. [PMID: 38975173 PMCID: PMC11225750 DOI: 10.1016/j.heliyon.2024.e32623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Diabetic neuropathy (DN) represents a common and debilitating complication of diabetes, affecting a significant proportion of patients. Despite available treatments focusing on symptom management, there remains an unmet need for therapies that address the underlying pathophysiology. In pursuit of novel interventions, this study evaluated the therapeutic effects of caffeic acid-a natural phenolic compound prevalent in various foods-on diabetic neuropathy using a mouse model, particularly examining its interaction with the Insulin-like Growth Factor 1 (IGF-1) signaling pathway. Caffeic acid was administered orally at two dosages (5 mg/kg and 10 mg/kg), and a comprehensive set of outcomes including fasting blood glucose levels, body weight, sensory behavior, spinal cord oxidative stress markers, inflammatory cytokines, and components of the IGF-1 signaling cascade were assessed. Additionally, to determine the specific contribution of IGF-1 signaling to the observed benefits, IGF1R inhibitor Picropodophyllin (PPP) was co-administered with caffeic acid. Our results demonstrated that caffeic acid, at both dosages, effectively reduced hyperglycemia and alleviated sensory behavioral deficits in diabetic mice. This was accompanied by a marked decrease in oxidative stress markers and an increase in antioxidant enzyme activities within the spinal cord. Significantly lowered microglial activation and inflammatory cytokine expression highlighted the potent antioxidative and anti-inflammatory effects of caffeic acid. Moreover, increases in both serum and spinal levels of IGF-1, along with elevated phosphorylated IGF1R, implicated the IGF-1 signaling pathway as a mediator of caffeic acid's neuroprotective actions. The partial reversal of caffeic acid's benefits by PPP substantiated the pivotal engagement of IGF-1 signaling in mediating its effects. Our findings delineate the capability of caffeic acid to mitigate DN symptoms, particularly through reducing spinal oxidative stress and inflammation, and pinpoint the integral role of IGF-1 signaling in these protective mechanisms. The insights gleaned from this study not only position caffeic acid as a promising dietary adjunct for managing diabetic neuropathy but also highlight the therapeutic potential of targeting spinal IGF-1 signaling as part of a strategic treatment approach.
Collapse
Affiliation(s)
- Leina Hou
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jiaqi Ma
- Department of Radiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Xugang Feng
- Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jing Chen
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Bu-huai Dong
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Li Xiao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Xi Zhang
- Department of Pediatric Neurology, Northwest Women and Children's Hospital, Xi'an, 710049, China
| | - Bin Guo
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| |
Collapse
|
6
|
Liu S, Yang X, Yuan M, Wang S, Fan H, Zou Q, Pu Y, Cai Z. High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling. Metab Brain Dis 2024; 39:803-819. [PMID: 38771412 DOI: 10.1007/s11011-024-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.
Collapse
Affiliation(s)
- Shu Liu
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Xu Yang
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
- Department of Neurology, Affiliated Hospital of Southwest Medical University, 646000, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Shengyuan Wang
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, 400042, Chongqing, China.
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, 400016, Chongqing, Chongqing, China.
| |
Collapse
|
7
|
Wang W, Chen C, Wang Q, Ma J, Li Y, Guan Z, Wang R, Chen X. Electroacupuncture pretreatment preserves telomerase reverse transcriptase function and alleviates postoperative cognitive dysfunction by suppressing oxidative stress and neuroinflammation in aged mice. CNS Neurosci Ther 2024; 30:e14373. [PMID: 37501354 PMCID: PMC10848091 DOI: 10.1111/cns.14373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Elderly patients often exhibit postoperative cognitive dysfunction (POCD), a postsurgical decline in memory and executive function. Oxidative stress and neuroinflammation, both pathological characteristics of the aged brain, contribute to this decline. This study posits that electroacupuncture (EA) stimulation, an effective antioxidant and anti-inflammatory modality, may enhance telomerase reverse transcriptase (TERT) function, the catalytic subunit of telomerase known for its protective properties against cellular senescence and oxidative damage, to alleviate POCD in aged mice. METHODS The animal POCD model was created by subjecting aged mice to abdominal surgery, followed by EA pretreatment at the Baihui acupoint (GV20). Postoperative cognitive function was gauged using the Morris water maze (MWM) test. Hippocampal TERT mRNA levels and telomerase activity were determined through qPCR and a Telomerase PCR ELISA kit, respectively. Oxidative stress was assessed through superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) levels. Iba-1 immunostaining determined the quantity of hippocampal microglia. Additionally, western blotting assessed TERT, autophagy markers, and proinflammatory cytokines at the protein level. RESULTS Abdominal surgery in aged mice significantly decreased telomerase activity and TERT mRNA and protein levels, but increased oxidative stress and neuroinflammation and decreased autophagy in the hippocampus. EA-pretreated mice demonstrated improved postoperative cognitive performance, enhanced telomerase activity, increased TERT protein expression, improved TERT mitochondrial localization, and reduced oxidative damage, autophagy dysfunction, and neuroinflammation. The neuroprotective benefits of EA pretreatment were diminished following TERT knockdown. CONCLUSIONS Our findings underscore the significance of TERT function preservation in alleviating surgery-induced oxidative stress and neuroinflammation in aged mice. A novel neuroprotective mechanism of EA stimulation is highlighted, whereby modulation of TERT and telomerase activity reduces oxidative damage and neuroinflammation. Consequently, maintaining TERT function via EA treatment could serve as an effective strategy for managing POCD in elderly patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Chen Chen
- Department of Burns and Plastic surgeryHainan Hospital of PLA General HospitalSanyaHainanChina
| | - Qiang Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ji‐Guang Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yan‐Song Li
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zheng Guan
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Rui Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Chen
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdongChina
| |
Collapse
|
8
|
Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F. Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 2024; 14:2509. [PMID: 38291199 PMCID: PMC10827749 DOI: 10.1038/s41598-024-53127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigates the potential of ellagic acid (EA), a phytochemical with antioxidant and anti-inflammatory properties, in managing perioperative neurocognitive disorders (PND). PND, which represents a spectrum of cognitive impairments often faced by elderly patients, is principally linked to surgical and anesthesia procedures, and heavily impacted by oxidative stress in the hippocampus and microglia-induced neuroinflammation. Employing an aged mice model subjected to abdominal surgery, we delve into EA's ability to counteract postoperative oxidative stress and cerebral inflammation by engaging the Insulin-like growth factor-1 (IGF-1) pathway. Our findings revealed that administering EA orally notably alleviated post-surgical cognitive decline in older mice, a fact that was manifested in improved performance during maze tests. This enhancement in the behavioral performance of the EA-treated mice corresponded with the rejuvenation of IGF-1 signaling, a decrease in oxidative stress markers in the hippocampus (like MDA and carbonylated protein), and an increase in the activity of antioxidant enzymes such as SOD and CAT. Alongside these, we observed a decrease in microglia-driven neuroinflammation in the hippocampus, thus underscoring the antioxidant and anti-inflammatory roles of EA. Interestingly, when EA was given in conjunction with an IGF1R inhibitor, these benefits were annulled, accentuating the pivotal role that the IGF-1 pathway plays in the neuroprotective potential of EA. Hence, EA could serve as a potent candidate for safeguarding against PND in older patients by curbing oxidative stress and neuroinflammation through the activation of the IGF-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yabo Hao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Xinrong Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Fang Yue
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
9
|
Li L, Li T, Qu X, Sun G, Fu Q, Han G. Stress/cell death pathways, neuroinflammation, and neuropathic pain. Immunol Rev 2024; 321:33-51. [PMID: 37688390 DOI: 10.1111/imr.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Liu Q, Lu Z, Ren H, Fu L, Wang Y, Bu H, Ma M, Ma L, Huang C, Wang J, Zang W, Cao J, Fan X. Cav3.2 T-Type calcium channels downregulation attenuates bone cancer pain induced by inhibiting IGF-1/HIF-1α signaling pathway in the rat spinal cord. J Bone Oncol 2023; 42:100495. [PMID: 37583441 PMCID: PMC10423893 DOI: 10.1016/j.jbo.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background Bone cancer pain (BCP) is one of the most ubiquitous and refractory symptoms of cancer patients that needs to be urgently addressed. Substantial studies have revealed the pivotal role of Cav3.2 T-type calcium channels in chronic pain, however, its involvement in BCP and the specific molecular mechanism have not been fully elucidated. Methods The expression levels of Cav3.2, insulin-like growth factor 1(IGF-1), IGF-1 receptor (IGF-1R) and hypoxia-inducible factor-1α (HIF-1α) were detected by Western blot in tissues and cells. X-ray and Micro CT used to detect bone destruction in rats. Immunofluorescence was used to detect protein expression and spatial location in the spinal dorsal horn. Electrophoretic mobility shift assay used to verify the interaction between HIF-1α and Cav3.2. Results The results showed that the expression of Cav3.2 channel was upregulated and blockade of this channel alleviated mechanical allodynia and thermal hyperalgesia in BCP rats. Additionally, inhibition of IGF-1/IGF-1R signaling not only reversed the BCP-induced upregulation of Cav3.2 and HIF-1α, but also decreased nociceptive hypersensitivity in BCP rats. Inhibition of IGF-1 increased Cav3.2 expression levels, which were abolished by pretreatment with HIF-1α siRNA in PC12 cells. Furthermore, nuclear HIF-1α bound to the promoter of Cav3.2 to regulate the Cav3.2 transcription level, and knockdown of HIF-1α suppresses the IGF-1-induced upregulation of Cav3.2 and pain behaviors in rats with BCP. Conclusion These findings suggest that spinal Cav3.2 T-type calcium channels play a central role during the development of bone cancer pain in rats via regulation of the IGF-1/IGF-1R/HIF-1α pathway.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhongyuan Lu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huan Ren
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijun Fu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yueliang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huilian Bu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Minyu Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Letian Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Huang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
11
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
12
|
Tsuda M, Masuda T, Kohno K. Microglial diversity in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00124-8. [PMID: 37244781 DOI: 10.1016/j.tins.2023.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keita Kohno
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Jin S, Cheng J. Insulin-like Growth Factor-1 (IGF-1) Related Drugs in Pain Management. Pharmaceuticals (Basel) 2023; 16:ph16050760. [PMID: 37242543 DOI: 10.3390/ph16050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Objective. The aim of this review is to explore the role of IGF-1 and IGF-1R inhibitors in pain-related conditions and assess the effectiveness of IGF-1-related drugs in pain management. Specifically, this paper investigates the potential involvement of IGF-1 in nociception, nerve regeneration, and the development of neuropathic pain. Methods. We conducted a search of the PUBMED/MEDLINE database, Scopus, and the Cochrane Library for all reports published in English on IGF-1 in pain management from origination through November 2022. The resulting 545 articles were screened, and 18 articles were found to be relevant after reading abstracts. After further examination of the full text of these articles, ten were included in the analysis and discussion. The levels of clinical evidence and implications for recommendations of all the included human studies were graded. Results. The search yielded 545 articles, of which 316 articles were deemed irrelevant by reading the titles. There were 18 articles deemed relevant after reading abstracts, of which 8 of the reports were excluded due to lack of IGF-1-related drug treatment after reviewing the full text of the articles. All ten articles were retrieved for analysis and discussion. We found that IGF-1 may have several positive effects on pain management, including promoting the resolution of hyperalgesia, preventing chemotherapy-induced neuropathy, reversing neuronal hyperactivity, and elevating the nociceptive threshold. On the other hand, IGF-1R inhibitors may alleviate pain in mice with injury of the sciatic nerve, bone cancer pain, and endometriosis-induced hyperalgesia. While one study showed marked improvement in thyroid-associated ophthalmopathy in humans treated with IGF-1R inhibitor, two other studies did not find any benefits from IGF-1 treatment. Conclusions. This review highlights the potential of IGF-1 and IGF-1R inhibitors in pain management, but further research is needed to fully understand their efficacy and potential side effects.
Collapse
Affiliation(s)
- Seokhyun Jin
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jianguo Cheng
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Departments of Pain Management and Neurosciences, Cleveland Clinic, 9500 Euclid Avenue/C25, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
16
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
17
|
Li F, He C, Yao H, Zhao Y, Ye X, Zhou S, Zou J, Li Y, Li J, Chen S, Han F, Huang K, Lian G, Chen S. Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA-m6A modification. Pharmacol Res 2023; 187:106555. [PMID: 36403721 DOI: 10.1016/j.phrs.2022.106555] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Perineural invasion (PNI) has a high incidence and poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Our study aimed to identify the underlying molecular mechanism of PNI and propose effective intervention strategies. METHODS To observe PNI in vitro and in vivo, a Matrigel/ dorsal root ganglia (DRG) model and a murine sciatic nerve invasion model were respectively used. Magnetic resonance (MR) imaging and positron emission tomography/computed tomography (PET-CT) imaging were also used to evaluate tumor growth. Publicly available datasets and PDAC tissues were used to verify how the nerve cells regulate PDAC cells' PNI. RESULTS Our results showed that glutamate from nerve cells could cause calcium influx in PDAC cells via the N-methyl-d-aspartate receptor (NMDAR), subsequently activating the downstream Ca2+ dependent protein kinase CaMKII/ERK-MAPK pathway and promoting the mRNA transcription of gene METTL3. Next, METTL3 upregulates the expression of hexokinase 2 (HK2) through N6-methyladenosine (m6A) modification in mRNA, enhances the PDAC cells' glycolysis, and promotes PNI. Furthermore, the IONPs-PEG-scFvCD44v6-scAbNMDAR2B nanoparticles dual targeting CD44 variant isoform 6 (CD44v6) and t NMDAR subunit 2B (NMDAR2B) on PDAC cells were synthesized and verified showing a satisfactory blocking effect on PNI. CONCLUSIONS Here, we firstly provided evidence that glutamate from the nerve cells could upregulate the expression of HK2 through mRNA m6A modification via NMDAR2B and downstream Ca2+ dependent CaMKII/ERK-MAPK pathway, enhance the glycolysis in PDAC cells, and ultimately promote PNI. In addition, the dual targeting nanoparticles we synthesized were verified to block PNI effectively in PDAC.
Collapse
Affiliation(s)
- Fengjiao Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Gastroenterology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Chong He
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hanming Yao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yue Zhao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xijiu Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shurui Zhou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fanghai Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Shangxiang Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Maiese K. Pyroptosis, Apoptosis, and Autophagy: Critical Players of Inflammation and Cell Demise in the Nervous System. Curr Neurovasc Res 2022; 19:241-244. [PMID: 35909267 DOI: 10.2174/1567202619666220729093449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Painful Diabetic Neuropathy Is Associated with Compromised Microglial IGF-1 Signaling Which Can Be Rescued by Green Tea Polyphenol EGCG in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6773662. [PMID: 35401920 PMCID: PMC8984065 DOI: 10.1155/2022/6773662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
Background Painful diabetic neuropathy (PDN) is a frequent and troublesome complication of diabetes, with little effective treatment. PDN is characterized by specific spinal microglia-mediated neuroinflammation. Insulin-like growth factor 1 (IGF-1) primarily derives from microglia in the brain and serves a vital role in averting the microglial transition into the proinflammatory M1 phenotype. Given that epigallocatechin-3-gallate (EGCG) is a potent anti-inflammatory agent that can regulate IGF-1 signaling, we speculated that EGCG administration might reduce spinal microglia-related neuroinflammation and combat the development of PDN through IGF-1/IGF1R signaling. Methods Type 1 diabetes mellitus (T1DM) was established by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) in mice. The protein expression level of IGF-1, its receptor IGF1R, interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) was determined by Western blot or immunofluorescence. Results The spinal IGF-1 expression markedly decreased along with the presence of pain-like behaviors, the spinal genesis of neuroinflammation (increased IL-1β, TNF-α, and Iba-1+ microglia), and the intensified M1 microglia polarization (increased iNOS+Iba-1+ microglia) in diabetic mice. IGF-1 could colocalize with neurons, astrocytes, and microglia, but only microglial IGF-1 was repressed in T1DM mice. Furthermore, we found that i.t. administration of mouse recombinant IGF-1 (rIGF-1) as well as i.t. or i.p. treatment with EGCG alleviated the diabetes-induced pain-like behaviors, reduced neuroinflammation (suppressed IL-1β, TNF-α, and Iba-1+ microglia), prevented the M1 microglia polarization (less iNOS+Iba-1+ microglia), and restored the microglial IGF-1 expression. Conclusions Our data highlighted the importance of maintaining spinal IGF-1 signaling in treating microglia-related neuroinflammation in PDN. This study also provides novel insights into the neuroprotective mechanisms of EGCG against neuropathic pain and neuroinflammation through IGF-1 signaling, indicating that this agent may be a promising treatment for PDN in the clinical setting.
Collapse
|