1
|
Meshkat S, Kwan ATH, Le GH, Wong S, Teopiz KM, Wang L, Rosenblat JD, Rhee TG, Cao B, McIntyre RS. Efficacy of orexin antagonists for the management of major depressive disorder: A systematic review of randomized clinical trials. J Affect Disord 2024; 372:409-419. [PMID: 39638064 DOI: 10.1016/j.jad.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Orexin receptor antagonists are a group of medications primarily developed to treat insomnia. Preliminary studies support their efficacy in the treatment of depression. In this systematic review, we aim to evaluate the efficacy of orexin receptor antagonists for the treatment of major depressive disorder (MDD). Electronic databases were searched from inception to February 2024 to find relevant studies. Original studies in English that evaluated efficacy of orexin receptor antagonists were included. A total of five randomized clinical trials involving 498 participants were included. Seltorexant (20 mg) significantly decreased depression scores when compared to placebo, as measured by the Hamilton Depression Rating Scale (HDRS). In patients with inadequate responses to antidepressants, seltorexant (20 mg) also showed improvement in Montgomery-Ǻsberg Depression Rating Scale (MADRS) total scores compared to placebo. However, filorexant did not exhibit a significant difference in MADRS total scores compared to placebo. A separate study on seltorexant (40 mg) for MDD patients resulted in a non-significant decrease in depressive symptoms compared to placebo, as measured by the Quick Inventory of Depressive Symptomatology - Self-Report (QIDS-SR). Taken together, these findings highlight the potential of orexin receptor antagonists, particularly seltorexant, as a novel avenue for managing depressive symptoms in MDD. Further research is warranted to better understand their role in depression treatment and their safety profile.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sabrina Wong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Larry Wang
- Department of Psychiatry, Central Michigan University, Saginaw, MI, USA
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Bin-Alamer O, Abou-Al-Shaar H, Efrati S, Hadanny A, Beckman RL, Elamir M, Sussman E, Maroon JC. Hyperbaric oxygen therapy as a neuromodulatory technique: a review of the recent evidence. Front Neurol 2024; 15:1450134. [PMID: 39445195 PMCID: PMC11496187 DOI: 10.3389/fneur.2024.1450134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperbaric oxygen therapy (HBOT) has recently emerged as a promising neuromodulatory modality for treating several neurological and psychological disorders. Various studies indicate that HBOT can promote brain recovery and neuroplasticity through the modulation of key cellular and molecular mechanisms. HBOT affects multiple primary pathways and cellular functions including mitochondrial biogenesis and function (increased Bcl-2, reduced Bax, and enhanced ATP production), neurogenesis (upregulation of Wnt-3 and VEGF/ERK signaling), synaptogenesis (elevated GAP43 and synaptophysin expression), and anti-inflammatory responses (reduced TNF-α and IL-6). These mechanisms contribute to significant clinical benefits, such as enhanced cognitive function, improved recovery from traumatic brain injury and post-concussion syndrome, and symptom reduction in conditions like post-traumatic stress disorder and fibromyalgia. By influencing these molecular targets, HBOT offers a novel approach to neuromodulation that warrants further exploration. This review discusses the representative mechanisms of action of HBOT and highlights its therapeutic neuromodulatory effects and potential clinical applications across various neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Robert L. Beckman
- Foundation for the Study of Inflammatory Disease, Bethesda, MD, United States
| | | | | | - Joseph C. Maroon
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Dilixiati D, Kadier K, Laihaiti D, Lu JD, Azhati B, Rexiati M. Association between leucocyte telomere length and erectile dysfunction in US adults: a secondary study based on 2001-2002 NHANES data. BMJ Open 2024; 14:e077808. [PMID: 38643009 PMCID: PMC11033652 DOI: 10.1136/bmjopen-2023-077808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/04/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the association between the leucocyte telomere length (LTL) and erectile dysfunction (ED) among a nationally representative sample of US adults. DESIGN Secondary population-based study. SETTING The National Health and Nutrition Examination Survey (NHANES) (2001-2002). PARTICIPANTS A total of 1694 male participants were extracted from the NHANES database for 2001-2002. PRIMARY AND SECONDARY OUTCOME MEASURES The primary focus of the study was to determine the association between the LTL and ED, using multivariate logistic regression and restricted cubic spline models for examination. The secondary outcome measures involved conducting stratified subgroup analyses to exclude interactions of different variables with the LTL. RESULTS Participants with ED had shorter LTLs than those without ED (p<0.05). After adjusting for confounding factors, compared with the reference lowest LTL quartile, the ORs and 95% CIs for the second, third and fourth LTL quartiles were (OR 1.51; 95% CI 1.01 to 2.26), (OR 1.79; 95% CI 1.24 to 2.58) and (OR 1.25; 95% CI 0.74 to 2.11), respectively. In addition, restricted cubic splines showed an inverted J-curve relationship between the LTL and ED. At an LTL of 1.037, the curve showed an inflection point. The ORs (95% CI) of ED on the left and right sides of the inflection point were (OR 1.99; 95% CI 0.39 to 10.20; p=0.385) and (OR 0.17; 95% CI 0.03 to 0.90; p=0.039). CONCLUSION Our results demonstrated an inverted J-curve relationship between the LTL and ED. When the LTL was ≥1.037, the incidence of ED decreased with increasing LTL.
Collapse
Affiliation(s)
- Diliyaer Dilixiati
- Department of Urology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaisaierjiang Kadier
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Duolikun Laihaiti
- Department of Joint Surgery, Changji Branch of First Affiliated Hospital of Xinjiang Medical University, Changji, China
| | - Jian-De Lu
- Department of Urology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baihetiya Azhati
- Department of Urology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mulati Rexiati
- Department of Urology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Jia L, Xiao L, Fu Y, Shao Z, Jing Z, Yuan J, Xie Y, Guo J, Wang Y, Geng W. Neuroprotective effects of probiotics on anxiety- and depression-like disorders in stressed mice by modulating tryptophan metabolism and the gut microbiota. Food Funct 2024; 15:2895-2905. [PMID: 38404190 DOI: 10.1039/d3fo03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Anxiety- and depression-like behaviors are commonly observed clinical features of depression and many other mental disorders. Recent evidence has revealed the crucial role of the microbiota-gut-brain axis in the bidirectional communication between the gastrointestinal tract and the central nervous system. Supplementation with psychobiotics may provide a novel approach for the adjunctive treatment of mental disorders by regulating the intestinal microecology. We isolated and identified a novel probiotic, Lactiplantibacillus plantarum D-9 (D-9), from traditional Chinese fermented foods in our previous work, which exhibited a high yield of gamma-aminobutyric acid (GABA). Herein, it was proved that the oral administration of D-9 could alleviate the depression- and anxiety-like behaviors of Chronic Unpredicted Mild Stress (CUMS) mice, and show non-toxicity or side-effects in the mice. Physiological and biochemical analyses demonstrated that D-9 regulated tryptophan metabolism, the HPA-axis and inflammation in CUMS mice. Moreover, D-9 modulated the structure and composition of the gut microbiota, leading to an increase in the relative abundance of Ligilactobacillus murinus and Lactobacillus johnsonii, and a decrease in the levels of Kineothrix alysoides and Helicobacter bilis compared to those in CUMS mice. Our work demonstrates that D-9 alleviated anxiety- and depression-like disorders in CUMS mice by modulating tryptophan metabolism and the gut microbiota. These findings provide an innovative strategy for the intervention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Ling Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yao Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhaoxuan Jing
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Jiahu Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yufeng Xie
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
- College of Food Science and Engineering, Harbin University, Harbin 150086, P. R. China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
5
|
Palepu MSK, Gajula SNR, K M, Sonti R, Dandekar MP. SCFAs Supplementation Rescues Anxiety- and Depression-like Phenotypes Generated by Fecal Engraftment of Treatment-Resistant Depression Rats. ACS Chem Neurosci 2024; 15:1010-1025. [PMID: 38382546 DOI: 10.1021/acschemneuro.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Malleshwari K
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
6
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
7
|
Manchia M, Paribello P, Pisanu C, Congiu D, Antoniades A, Vogazianos P, Tozzi F, Pinna F, Aristodimou A, Caria P, Dettori T, Frau DV, Cocco C, Noli B, Panebianco C, Pazienza V, Carpiniello B, Squassina A. A Pilot Interaction Analysis of Gut Microbiota and Peripheral Markers of Aging in Severe Psychiatric Disorders: A Role for Lachnoclostridium? Int J Mol Sci 2023; 24:17618. [PMID: 38139446 PMCID: PMC10744008 DOI: 10.3390/ijms242417618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Excessive predominance of pathological species in the gut microbiota could increase the production of inflammatory mediators at the gut level and, via modification of the gut-blood barrier, at the systemic level. This pro-inflammatory state could, in turn, increase biological aging that is generally proxied by telomere shortening. In this study, we present findings from a secondary interaction analysis of gut microbiota, aging, and inflammatory marker data from a cohort of patients with different diagnoses of severe mental disorders. We analyzed 15 controls, 35 patients with schizophrenia (SCZ), and 31 patients with major depressive disorder (MDD) recruited among those attending a community mental health center (50 males and 31 females, mean and median age 46.8 and 46.3 years, respectively). We performed 16S rRNA sequencing as well as measurement of telomere length via quantitative fluorescence in situ hybridization and high-sensitivity C-reactive protein. We applied statistical modeling with logistic regression to test for interaction between gut microbiota and these markers. Our results showed statistically significant interactions between telomere length and gut microbiota pointing to the genus Lachnostridium, which remained significantly associated with a reduced likelihood of MDD even after adjustment for a series of covariates. Although exploratory, these findings show that specific gut microbiota signatures overexpressing Lachnoclostridium and interacting with biological aging could modulate the liability for MDD.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09127 Cagliari, Italy; (P.P.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09127 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09127 Cagliari, Italy; (P.P.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09127 Cagliari, Italy
| | - Claudia Pisanu
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (D.C.); (A.S.)
| | - Donatella Congiu
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (D.C.); (A.S.)
| | - Athos Antoniades
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (A.A.); (P.V.); (F.T.); (A.A.)
| | - Paris Vogazianos
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (A.A.); (P.V.); (F.T.); (A.A.)
| | - Federica Tozzi
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (A.A.); (P.V.); (F.T.); (A.A.)
| | - Federica Pinna
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09127 Cagliari, Italy; (P.P.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09127 Cagliari, Italy
| | - Aristos Aristodimou
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (A.A.); (P.V.); (F.T.); (A.A.)
| | - Paola Caria
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (T.D.); (D.V.F.)
| | - Tinuccia Dettori
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (T.D.); (D.V.F.)
| | - Daniela Virginia Frau
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (T.D.); (D.V.F.)
| | - Cristina Cocco
- NEF Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.C.); (B.N.)
| | - Barbara Noli
- NEF Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.C.); (B.N.)
| | - Concetta Panebianco
- Gastreonterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (C.P.); (V.P.)
| | - Valerio Pazienza
- Gastreonterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (C.P.); (V.P.)
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09127 Cagliari, Italy; (P.P.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09127 Cagliari, Italy
| | - Alessio Squassina
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (D.C.); (A.S.)
| |
Collapse
|
8
|
Tentu PM, Bazaz MR, Pasam T, Shaikh AS, Rahman Z, Mourya A, Kaki VR, Madan J, Dandekar MP. Oxyberberine an oxoderivative of berberine confers neuroprotective effects in controlled-cortical impact mouse model of traumatic brain injury. Int J Neurosci 2023:1-16. [PMID: 37982448 DOI: 10.1080/00207454.2023.2286209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is known as a silent epidemic that causes many deaths and disabilities worldwide. We examined the response of oxyberberine (OBB) in lipopolysaccharide-stimulated BV2 microglial cells and a controlled-cortical impact (CCI) mouse model of TBI. METHODS We synthesized OBB from berberine, and also prepared OBB-nanocrystals (OBB-NC). Male C57BL/6 mice were used for CCI surgery, and post-CCI neurobehavioral deficits were assessed from 1 h after injury through 21 days post-injury (dpi). RESULTS OBB treatment reduced the lipopolysaccharide-triggered elevated levels of reactive oxygen species, nitric oxide, and nuclear factor kappa B (NF-κB) in BV2 microglial cells, indicating a neuroprotective potential. CCI-operated mice exhibited significant neurological deficits on 1, 3, and 5 dpi in neurological severity scoring and rotarod assay. OBB (25 and 50 mg/kg/day) and OBB-NC (3 mg/kg/day) ameliorated these neurological aberrations. Mice subjected to CCI surgery also displayed anxiogenic- and depression-like behaviours, and cognitive impairments in forced-swimming test and elevated-zero maze, and novel object recognition task, respectively. Administration of OBB reduced these long-term neuropsychiatric complications, and also levels of toll-like receptor 4 (TLR4), high-motility group protein 1 (HMGB1), NF-κB, tumour necrosis factor-alpha and interleukin 6 cytokines in the ipsilateral cortex of mice. CONCLUSION We suggest that the administration of OBB offers neuroprotective effects via inhibition of HMGB1-mediated TLR4/NFκB pathway.
Collapse
Affiliation(s)
- Priya Mounika Tentu
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Tulasi Pasam
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Ziaur Rahman
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
9
|
Satti S, Palepu MSK, Singh AA, Jaiswal Y, Dash SP, Gajula SNR, Chaganti S, Samanthula G, Sonti R, Dandekar MP. Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats. Neurochem Int 2023; 163:105483. [PMID: 36641109 DOI: 10.1016/j.neuint.2023.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1β, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.
Collapse
Affiliation(s)
- Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India.
| |
Collapse
|
10
|
Paroxetine effects in adult male rat colon: Focus on gut steroidogenesis and microbiota. Psychoneuroendocrinology 2022; 143:105828. [PMID: 35700562 DOI: 10.1016/j.psyneuen.2022.105828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2023]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), is prescribed to treat psychiatric disorders, although an off-label SSRI use is also for functional gastrointestinal disorders. The mutual correlation between serotonin and peripheral sex steroids has been reported, however little attention to sex steroids synthesized by gut, has been given so far. Indeed, whether SSRIs, may also influence the gut steroid production, immediately after treatment and/or after suspension, is still unclear. The finding that gut possesses steroidogenic capability is of particular relevance, also for the existence of the gut-microbiota-brain axis, where gut microbiota represents a key orchestrator. On this basis, adult male rats were treated daily for two weeks with paroxetine or vehicle and, 24 h after treatment and at 1 month of withdrawal, steroid environment and gut microbiota were evaluated. Results obtained reveal that paroxetine significantly affects steroid levels, only in the colon but not in plasma. In particular, steroid modifications observed immediately after treatment are not overlap with those detected at withdrawal. Additionally, paroxetine treatment and its withdrawal impact gut microbiota populations differently. Altogether, these results suggest a biphasic effect of the drug treatment in the gut both on steroidogenesis and microbiota.
Collapse
|
11
|
Kumar Palepu MS, Dandekar MP. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur J Pharmacol 2022; 931:175171. [PMID: 35926568 DOI: 10.1016/j.ejphar.2022.175171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Depression is a multifaceted psychiatric disorder mainly orchestrated by dysfunction of neuroendocrine, neurochemical, immune, and metabolic systems. The interconnection of gut microbiota perturbation with the central nervous system disorders has been well documented in recent times. Indeed, alteration of commensal intestinal microflora is noted in several psychiatric disorders such as anxiety and depression, which are presumed to be routed through the enteric nervous system, autonomic nervous system, endocrine, and immune system. This review summarises the new mechanisms underlying the crosstalk between gut microbiota and brain involved in the management of depression. Depression-induced changes in the commensal intestinal microbiota are majorly linked with the disruption of gut integrity, hyperinflammation, and modulation of short-chain fatty acids, neurotransmitters, kynurenine metabolites, endocannabinoids, brain-derived neurotropic factors, hypothalamic-pituitary-adrenal axis, and gut peptides. The restoration of gut microbiota with prebiotics, probiotics, postbiotics, synbiotics, and fermented foods (psychobiotics) has gained a considerable attention for the management of depression. Recent evidence also propose the role of gut microbiota in the process of treatment-resistant depression. Thus, remodeling of the microbiota-gut-brain axis using psychobiotics appears to be a promising therapeutic approach for the reversal of psychiatric disorders, and it is imperative to decipher the underlying mechanisms for gut-brain crosstalk.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
12
|
Chen SS, Liao XM, Wei QZ, Zhou YY, Su MY, Hu Y, Song YY, Zhang ZQ, Liang JJ. Associations of the Gut Microbiota Composition and Fecal Short-Chain Fatty Acids with Leukocyte Telomere Length in Children Aged 6 to 9 Years in Guangzhou, China: A Cross-sectional Study. J Nutr 2022; 152:1549-1559. [PMID: 35278080 DOI: 10.1093/jn/nxac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomere length (TL) serves as a marker of cellular senescence and appears to plateau between the age of 4 y and young adulthood, after which the gut microbiota are supposed to be established. However, scarce data are available regarding the correlation between gut microbiota composition and TL in the pediatric population. OBJECTIVES We aimed to investigate whether the gut microbiota and the concentrations of SCFAs in feces are associated with leukocyte TL in children. METHODS In total, 401 children aged 6-9 y from Guangzhou were enrolled in this cross-sectional study. qPCR was used to determine relative TL in peripheral blood leukocytes. The gut microbiota was characterized by 16S ribosomal RNA amplicon sequencing and the fecal concentrations of total SCFAs and SCFA subtypes were determined using HPLC. The multivariate methods with an unbiased variable selection (MUVR) algorithm and partial least square models were used to select predictable operational taxonomic units (OTUs). Further correlation analyses were performed based on multiple linear regression models with adjustment for covariates and false discovery rate. RESULTS With the use of MUVR, 35 relevant and minimal optimal OTUs were finally selected. Multiple linear regression analysis showed that the abundance of several OTUs, including OTU334 (belonging to the genus Family XIII AD3011 group), OTU726 (belonging to the species Lachnoclostridium phocaeense), OTU1441 (belonging to the genus Ruminococcus torques group), OTU2553 (belonging to the genus Lachnospiraceae UCG-010), and OTU3375 (belonging to the family Lachnospiraceae), was negatively associated with leukocyte TL (β: -0.187 to -0.142; false discovery rate (FDR)-corrected P value (PFDR) = 0.009-0.035]. However, neither SCFA subtype nor total SCFA content in feces exhibited significant associations with TL (β: -0.032 to 0.048; PFDR = 0.915-0.969). CONCLUSIONS The gut microbiota, but not fecal SCFA concentration, was significantly associated with TL in this pediatric population.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Mei Liao
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ying-Yu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meng-Yang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Hu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Song
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing-Jing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Using Microbiome-Based Approaches to Deprogram Chronic Disorders and Extend the Healthspan following Adverse Childhood Experiences. Microorganisms 2022; 10:microorganisms10020229. [PMID: 35208684 PMCID: PMC8879770 DOI: 10.3390/microorganisms10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host–microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.
Collapse
|