1
|
Nakajima K, Ota T, Toda H, Yamaguchi K, Goto Y, Ogi H. Surface Modification of Ultrasonic Cavitation by Surfactants Improves Detection Sensitivity of α-Synuclein Amyloid Seeds. ACS Chem Neurosci 2024; 15:1643-1651. [PMID: 38546732 DOI: 10.1021/acschemneuro.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The rapid amplification and sensitive detection of α-synuclein (αSyn) seeds is an efficient approach for the early diagnosis of Parkinson's disease. Ultrasonication stands out as a promising method for the rapid amplification of αSyn seeds because of its robust fibril fragmentation capability. However, ultrasonication also induces the primary nucleation of αSyn monomers, deteriorating the seed detection sensitivity by generating seed-independent fibrils. In this study, we show that an addition of surfactants to the αSyn monomer solution during αSyn seed detection under ultrasonication remarkably improves the detection sensitivity of the αSyn seeds by a factor of 100-1000. Chemical kinetic analysis reveals that these surfactants reduce the rate of primary nucleation while promoting the fragmentation of the αSyn fibrils under ultrasonication. These effects are attributed to the modification of the ultrasonic cavitation surface by the surfactants. Our study enhances the utility of ultrasonication in clinical assays targeting αSyn seeds as the Parkinson's disease biomarker.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tomoki Ota
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hajime Toda
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Kozell A, Solomonov A, Shimanovich U. Effects of sound energy on proteins and their complexes. FEBS Lett 2023; 597:3013-3037. [PMID: 37838939 DOI: 10.1002/1873-3468.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Mechanical energy in the form of ultrasound and protein complexes intuitively have been considered as two distinct unrelated topics. However, in the past few years, increasingly more attention has been paid to the ability of ultrasound to induce chemical modifications on protein molecules that further change protein-protein interaction and protein self-assembling behavior. Despite efforts to decipher the exact structure and the behavior-modifying effects of ultrasound on proteins, our current understanding of these aspects remains limited. The limitation arises from the complexity of both phenomena. Ultrasound produces multiple chemical, mechanical, and thermal effects in aqueous media. Proteins are dynamic molecules with diverse complexation mechanisms. This review provides an exhaustive analysis of the progress made in better understanding the role of ultrasound in protein complexation. It describes in detail how ultrasound affects an aqueous environment and the impact of each effect separately and when combined with the protein structure and fold, the protein-protein interaction, and finally the protein self-assembly. It specifically focuses on modifying role of ultrasound in amyloid self-assembly, where the latter is associated with multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Krzek M, Stroobants S, Gelin P, De Malsche W, Maes D. Influence of Centrifugation and Shaking on the Self-Assembly of Lysozyme Fibrils. Biomolecules 2022; 12:biom12121746. [PMID: 36551175 PMCID: PMC9775142 DOI: 10.3390/biom12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein self-assembly into fibrils and oligomers plays a key role in the etiology of degenerative diseases. Several pathways for this self-assembly process have been described and shown to result in different types and ratios of final assemblies, therewith defining the effective physiological response. Known factors that influence assembly pathways are chemical conditions and the presence or lack of agitation. However, in natural and industrial systems, proteins are exposed to a sequence of different and often complex mass transfers. In this paper, we compare the effect of two fundamentally different mass transfer processes on the fibrilization process. Aggregation-prone solutions of hen egg white lysozyme were subjected to predominantly non-advective mass transfer by employing centrifugation and to advective mass transport represented by orbital shaking. In both cases, fibrilization was triggered, while in quiescent only oligomers were formed. The fibrils obtained by shaking compared to fibrils obtained through centrifugation were shorter, thicker, and more rigid. They had rod-like protofibrils as building blocks and a significantly higher β-sheet content was observed. In contrast, fibrils from centrifugation were more flexible and braided. They consisted of intertwined filaments and had low β-sheet content at the expense of random coil. To the best of our knowledge, this is the first evidence of a fibrilization pathway selectivity, with the fibrilization route determined by the mass transfer and mixing configuration (shaking versus centrifugation). This selectivity can be potentially employed for directed protein fibrilization.
Collapse
Affiliation(s)
- Marzena Krzek
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sander Stroobants
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Pierre Gelin
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Wim De Malsche
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
4
|
Nakajima K, Yamaguchi K, Noji M, Aguirre C, Ikenaka K, Mochizuki H, Zhou L, Ogi H, Ito T, Narita I, Gejyo F, Naiki H, Yamamoto S, Goto Y. Macromolecular crowding and supersaturation protect hemodialysis patients from the onset of dialysis-related amyloidosis. Nat Commun 2022; 13:5689. [PMID: 36192385 PMCID: PMC9530240 DOI: 10.1038/s41467-022-33247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dialysis-related amyloidosis (DRA), a serious complication among long-term hemodialysis patients, is caused by amyloid fibrils of β2-microglobulin (β2m). Although high serum β2m levels and a long dialysis vintage are the primary and secondary risk factors for the onset of DRA, respectively, patients with these do not always develop DRA, indicating that there are additional risk factors. To clarify these unknown factors, we investigate the effects of human sera on β2m amyloid fibril formation, revealing that sera markedly inhibit amyloid fibril formation. Results from over 100 sera indicate that, although the inhibitory effects of sera deteriorate in long-term dialysis patients, they are ameliorated by maintenance dialysis treatments in the short term. Serum albumin prevents amyloid fibril formation based on macromolecular crowding effects, and decreased serum albumin concentration in dialysis patients is a tertiary risk factor for the onset of DRA. We construct a theoretical model assuming cumulative effects of the three risk factors, suggesting the importance of monitoring temporary and accumulated risks to prevent the development of amyloidosis, which occurs based on supersaturation-limited amyloid fibril formation in a crowded milieu.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Noji
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidahonmatsu-cho, Sakyo-ku, Kyoto, 606-8316, Japan
| | - César Aguirre
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Lianjie Zhou
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toru Ito
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Fumitake Gejyo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8603, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan. .,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
6
|
Development of HANABI, an ultrasonication-forced amyloid fibril inducer. Neurochem Int 2021; 153:105270. [PMID: 34954259 DOI: 10.1016/j.neuint.2021.105270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.
Collapse
|