1
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
2
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
3
|
Kaleta M, Hényková E, Menšíková K, Friedecký D, Kvasnička A, Klíčová K, Koníčková D, Strnad M, Kaňovský P, Novák O. Patients with Neurodegenerative Proteinopathies Exhibit Altered Tryptophan Metabolism in the Serum and Cerebrospinal Fluid. ACS Chem Neurosci 2024; 15:582-592. [PMID: 38194490 PMCID: PMC10853934 DOI: 10.1021/acschemneuro.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Eva Hényková
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry,
University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Zdravotníků 248/7, 779 00 Olomouc, Czech Republic
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry,
University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Zdravotníků 248/7, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|