1
|
Martínez-Magaña CJ, Murbartián J. Estrogen receptor α regulates the IKKs/NF-kB activity involved in the development of mechanical allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1845:149269. [PMID: 39384127 DOI: 10.1016/j.brainres.2024.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Several signaling pathways that converge in NF-kB activation have been linked to developing and maintaining different types of pathological pain. In addition, some mechanisms implied in the establishment of chronic pain have been demonstrated to have a sex-dependent correlation. This study aimed to determine if the IKKs/NF-kB signaling pathway is involved in establishing REM sleep deprivation (REMSD) induced mechanical allodynia in rats and its possible regulation depending on estradiol and estrogen receptors. Intrathecal administration of BMS-345541 or minocycline, two drugs that reduce the IKKs/NF-kB activity, avoided the development of mechanical allodynia in female but not in male rats subjected to 48 h of REMSD. Ovariectomy in female rats abolished the effect of BMS-345541 and minocycline. Meanwhile, the 17-β-estradiol restitution restored it. Intrathecal administration of MPP, a selective ERα antagonist, but not PHTPP, a selective ERβ antagonist, avoided the effect of BMS-345541 in female rats without hormonal manipulation. In addition, the transient run-down of ERα in female rats abolished the effect of BMS-345541. All data suggest an important role of ERα as a regulator of the IKKs/NF-kB activity. REMSD increased the ERα protein expression in the dorsal root ganglia and the dorsal spinal cord in females but not in male rats. Interestingly, ERα activation or ERα overexpression allowed the effect of BMS-345541 in male rats. Data suggest an important regulatory role of ERα in the IKKs/NF-kB activity on establishing mechanical allodynia induced by REMSD in female rats.
Collapse
Affiliation(s)
| | - Janet Murbartián
- Pharmacobiology Department, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
2
|
Ansari S, Khahpay R, Khakpai F, Heidarzadeh Z, Khojasteh SMB. Comparison of pain modulatory effect of the LPGi estragon receptor on inflammatory pain between pro-estrus and estrus phases and OVX rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06653-2. [PMID: 39180591 DOI: 10.1007/s00213-024-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
The present study has investigated whether circulating estrogen level variations in the pro-estrus and estrus phases of the intact rats and estrogen depletion in the ovariectomized animals (OVX) adjust the formalin-induced nociceptive behaviors. During the pro-estrus and estrus phases of rats' estrus cycle and in the OVX rats, 17β-estradiol and ICI 182,780 (estrogen receptor antagonist) were administered into the right paragigantocellularis lateralis (LPGi) nucleus. Then, the formalin-induced flexing and licking responses were recorded for 60 min. The findings of this study revealed that intra-LPGi administration of 17β-estradiol (0.8 μmol) reduced the formalin-induced flexing and licking duration in pro-estrus and estrus rats (P < 0.001), suggesting an analgesic effect. 17β-Estradiol injection into the LPGi nucleus of OVX rats increased the flexing duration (P < 0.05) while decreasing the licking duration (P < 0.05) of the formalin test. The pain modulatory effect of 17β-estradiol on the flexing response was reversed by ICI 182,780 (15 nmol) in the pro-estrus (P < 0.001) and estrus rats (P < 0.001) but not in the OVX rats. Also, pretreatment of LPGi nucleus with ICI 182,780 reversed the analgesic effect of 17β-estradiol on the licking response in the pro-estrus (P < 0.05), estrus (P < 0.001), and OVX rats (P < 0.001). These results suggest that the pain threshold in intact female rats is modulated independently of the estrus state. Still, the basal level of plasma estrogen and the activation of its receptors are necessary for pain modulation.
Collapse
Affiliation(s)
- Sanam Ansari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Roghaieh Khahpay
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Heidarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Wang J, Wang S, Fang Z, Zhao J, Zhang G, Guo Y, Wang Q, Jiang Z, Zhong H, Hou W. Estrogen receptor GPR30 in the anterior cingulate cortex mediates exacerbated neuropathic pain in ovariectomized mice. Brain Res 2024; 1829:148798. [PMID: 38403038 DOI: 10.1016/j.brainres.2024.148798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Menopausal women experience neuropathic pain 63% more frequently than men do, which may attribute to the estrogen withdrawal. However, the underlying mechanisms remain unclear. Here, the role of estrogen receptors (ERs) in ovariectomized (OVX) female mice following chronic constriction injury (CCI) was investigated. With 17β-estradiol (E2) supplemented, aggravated mechanical allodynia in OVX mice could be significantly alleviated, particularly after intra-anterior cingulate cortex (ACC) E2 delivery. Pharmacological interventions further demonstrated that the agonist of G-protein-coupled estrogen receptor 30 (GPR30), rather than ERα or ERβ in the ACC, exhibited the similar analgesic effect as E2, whereas antagonist of GPR30 exacerbated allodynia. Furthermore, OVX surgery reduced GPR30 expression in the ACC, which could be restored with estrogen supplementation. Selective downregulation of GPR30 in the ACC of naïve female mice induces mechanical allodynia, whereas GPR30 overexpression in the ACC remarkedly alleviated OVX-exacerbated allodynia. Collectively, estrogen withdrawal could downregulate the ACC GPR30 expression, resulting in exacerbated neuropathic pain. Our findings highlight the importance of GPR30 in the ACC in aggravated neuropathic pain during menopause, and offer a potential therapeutic candidate for neuropathic pain management in menopausal women.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guoqing Zhang
- Department of Cardiovasology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yaru Guo
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qun Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wugang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
4
|
Mucci V, Demori I, Browne CJ, Deblieck C, Burlando B. Fibromyalgia in Pregnancy: Neuro-Endocrine Fluctuations Provide Insight into Pathophysiology and Neuromodulation Treatment. Biomedicines 2023; 11:biomedicines11020615. [PMID: 36831148 PMCID: PMC9953487 DOI: 10.3390/biomedicines11020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Fibromyalgia (FM) is a chronic pain disorder with unclear pathophysiological mechanisms, which leads to challenges in patient management. In addition to pain, the disorder presents with a broad range of symptoms, such as sleep disruption, chronic fatigue, brain fog, depression, muscle stiffness, and migraine. FM has a considerable female prevalence, and it has been shown that symptoms are influenced by the menstrual cycle and periods of significant hormonal and immunological changes. There is increasing evidence that females with FM experience an aggravation of symptoms in pregnancy, particularly during the third trimester and after childbirth. In this perspective paper, we focus on the neuro-endocrine interactions that occur between progesterone, allopregnanolone, and cortisol during pregnancy, and propose that they align with our previously proposed model of FM pathogenesis based on GABAergic "weakening" in a thalamocortical neural loop system. Based on our hypothesis, we introduce the possibility of utilizing transcranial direct current stimulation (tDCS) as a non-invasive treatment potentially capable of exerting sex-specific effects on FM patients.
Collapse
Affiliation(s)
- Viviana Mucci
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
- Correspondence:
| | - Ilaria Demori
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy
| | - Cherylea J. Browne
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, Boogkeers 5, 2000 Antwerp, Belgium
| | - Bruno Burlando
- Department of Pharmacy, DIFAR, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
5
|
Song XX, Jin LY, Li Q, Li XF, Luo Y. Estrogen receptor β/substance P signaling in spinal cord mediates antinociceptive effect in a mouse model of discogenic low back pain. Front Cell Neurosci 2023; 16:1071012. [PMID: 36756381 PMCID: PMC9899865 DOI: 10.3389/fncel.2022.1071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Discogenic low back pain (DLBP) is the most commonly described form of back pain. Our previous studies indicated that estrogen-dependent DLBP mechanism was mediated by estrogen receptors (ERs) in the intervertebral disc (IVD) tissue, and the IVD degeneration degree is accompanied by downregulation of ERs, particularly ERβ. However, the neuropathological mechanisms underlying ERs modulation of DLBP are still not well understood. In this study, we investigated the antinociceptive effects of selective ERβ agonists on DLBP-related behavior by regulating substance P in spinal cord and dorsal root ganglia. Methods Two weeks after ovariectomies, 18-week-old female mice were randomly separated into four groups: control group; DLBP sham surgery plus vehicle group; DLBP plus vehicle group; DLBP plus ERβ-specific agonist diarylpropionitrile (DPN) group. Behavioral data was collected including behavioral measures of axial back pain (grip force and tail suspension tests) and radiating hypersensitivity (mechanical sensitivity and cold sensitivity test). Dual label scanning confocal immunofluorescence microscopy was used to observe spatial colocalization of ERβ and substance P in spinal cord. Substance P changes in spinal cord and dorsal root ganglia were measured by immunohistochemistry and real-time PCR. Results ERβ activation could improve both axial and radiating behavioral disorders of DLBP. DPN facilitated the decrease of the amount of time in immobility 1 week after agonist administration. At the time point of 3 weeks, DPN group spent significantly less time in immobility than the vehicle group. In the grip strength tests, starting from postoperative week 1-week 3, DPN injection DLBP mice showed more resistance to stretch than the vehicle injection DLBP mice. Significant differences of cold withdrawal latency time were observed between the DLBP plus DPN injection and DLBP vehicle injection groups at 2- and 3-week injection time point. DPN significantly reversed the paw withdrawal threshold of DLBP mice at the time point of 1, 2, and 3 weeks. Substance P colocalized with ERβ in spinal dorsal horn, mainly in laminae I and II, a connection site of pain transmission. Substance P levels in dorsal horn and dorsal root ganglia of DLBP group were distinctly increased compared with that of control and DLBP sham group. DPN therapy could decrease substance P content in the dorsal horn and the dorsal root ganglia of DLBP mice compared with that of vehicle-treated DLBP mice. Discussion Activation of ERβ is antinociceptive in the DLBP model by controlling substance P in spinal cord and dorsal root ganglia, which might provide a therapeutic target to manage DLBP in the clinic.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Yu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xin-Feng Li,
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yan Luo,
| |
Collapse
|
6
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
7
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
8
|
Luo X, Chen O, Wang Z, Bang S, Ji J, Lee SH, Huh Y, Furutani K, He Q, Tao X, Ko MC, Bortsov A, Donnelly CR, Chen Y, Nackley A, Berta T, Ji RR. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021; 109:2691-2706.e5. [PMID: 34473953 DOI: 10.1016/j.neuron.2021.06.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
9
|
McHann MC, Blanton HL, Guindon J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol Cell Endocrinol 2021; 533:111320. [PMID: 34033890 PMCID: PMC8263503 DOI: 10.1016/j.mce.2021.111320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023]
Abstract
According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.
Collapse
Affiliation(s)
- Melissa C McHann
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA.
| |
Collapse
|
10
|
Chen Q, Zhang W, Sadana N, Chen X. Estrogen receptors in pain modulation: cellular signaling. Biol Sex Differ 2021; 12:22. [PMID: 33568220 PMCID: PMC7877067 DOI: 10.1186/s13293-021-00364-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sensory perception and emotional disorders are disproportionally represented in men and women and are thus thought to be modulated by different sex hormones in various conditions. Among the most important hormones perceived to affect sensory processing and transduction is estrogen. Numerous previous researchers have endeavored to demonstrate that estrogen is capable of modulating the activity of sensory neurons in peripheral and central sites in female, male, or castrated animals. However, the underlying mechanisms of its modulation of neuronal activity are somewhat unclear. In the present review, we discuss the possible cellular and molecular mechanisms involved in the modulation of nociception by estrogen.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxin Zhang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neeti Sadana
- Department of Anesthesiology & Perioperative Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
12
|
Lee JY, Choi HY, Park CS, Kim DH, Yune TY. Total saponin extract, ginsenoside Rb1, and compound K alleviate peripheral and central neuropathic pain through estrogen receptors on rats. Phytother Res 2020; 35:2119-2132. [PMID: 33205558 DOI: 10.1002/ptr.6960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 01/02/2023]
Abstract
In this study, we investigated whether total saponin extract (TSE), ginsenoside Rb1, and Rb1 metabolite compound K, which are isolated from red ginseng, have antinociceptive effects on peripheral and central neuropathic pain (PNP and CNP, respectively). PNP and CNP were induced by tail nerve injury (TNI) at S1 and by contusive spinal cord injury (SCI) at T9 in male Sprague-Dawley rats, respectively. Two weeks after TNI or 4 weeks after SCI, pain-induced rats were orally administered vehicle, TSE (50 mg/kg), Rb1 (12.5 mg/kg), compound K (7 mg/kg), or gabapentin (GBP, 60 mg/kg), and the antinociceptive effects were examined by von Frey filament, cold/warm water, and hot plate analyses. Allodynia and hyperalgesia were significantly alleviated by TSE, Rb1, and GBP 1 hr after drug administration. The immunohistochemistry and real-time RT-PCR results showed that the activation of microglia/astrocytes and the expression of inflammatory mediators such as Il-1β, Il-6, iNOS, and Cox-2 were also significantly inhibited in L4-L5 spinal cord of CNP-induced rats 1 hr after drug administration. Furthermore, the antinociceptive effects of TSE and Rb1 were reversed by treatment with the estrogen receptor (ER) antagonist ICI182780. In particular, compound K also significantly alleviated both PNP and CNP. Therefore, our results indicate that TSE, Rb1, and compound K have potential antinociceptive effects against neuropathic pain that might be mediated through the ER.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, South Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, South Korea
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Xu ZZ, Chen QY, Deng SY, Zhang M, Tan CY, Yang Wang, Ma KT, Li L, Si JQ, Zhu LC. 17β-Estradiol Attenuates Neuropathic Pain Caused by Spared Nerve Injury by Upregulating CIC-3 in the Dorsal Root Ganglion of Ovariectomized Rats. Front Neurosci 2019; 13:1205. [PMID: 31787875 PMCID: PMC6856564 DOI: 10.3389/fnins.2019.01205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
17β-estradiol plays a role in pain sensitivity, analgesic drug efficacy, and neuropathic pain prevalence, but the underlying mechanisms remain unclear. Here, we investigated whether voltage-gated chloride channel-3 (ClC-3) impacts the effects of 17β-estradiol (E2) on spared nerve injury (SNI)-induced neuropathic pain in ovariectomized (OVX) female Sprague Dawley rats that were divided into OVX, OVX + SNI, OVX + SNI + E2, OVX + SNI + E2 + DMSO (vehicle, dimethyl sulfoxide), or OVX + SNI + E2+Cltx (ClC-3-blocker chlorotoxin) groups. Changes in ClC-3 protein expression were monitored by western blot analysis. Behavioral testing used the paw withdrawal threshold to acetone irritation and paw withdrawal thermal latency (PWTL) to thermal stimulation. Immunofluorescence indicated the localization and protein expression levels of ClC-3. OVX + SNI + E2 rats were subcutaneously injected with 17β-estradiol once daily for 7 days; a sheathed tube was implanted, and chlorotoxin was injected for 4 days. Intrathecal Cltx to OVX and OVX + SNI rats was administered for 4 consecutive days (days 7–10 after SNI) to further determine the contribution of ClC-3 to neuropathic pain. Patch clamp technology in current clamp mode was used to measure the current threshold (rheobase) dorsal root ganglion (DRG) neurons and the minimal current that evoked action potentials (APs) as excitability parameters. The mean number of APs at double-strength rheobase verified neuronal excitability. There was no difference in behaviors and ClC-3 expression after OVX. Compared with OVX + SNI rats, OVX + SNI + E2 rats showed a lower paw withdrawal threshold to the acetone stimulus, but the PWTL was not significantly different, indicating increased sensitivity to cold but not to thermal pain. Co-immunofluorescent data revealed that ClC-3 was mainly distributed in A- and C-type nociceptive neurons, especially in medium/small-sized neurons. 17β-estradiol administration was associated with increased expression of ClC-3. 17β-estradiol-induced increase in ClC-3 expression was blocked by co-administration of Cltx. Cltx causes hyperalgesia and decreased expression of ClC-3 in OVX rats. Patch clamp results suggested that 17β-estradiol attenuated the excitability of neurons induced by SNI by up-regulating the expression of ClC-3 in the DRG of OVX rats. 17β-estradiol administration significantly improved cold allodynia thresholds in OVX rats with SNI. The mechanism for this decreased sensitivity may be related to the upregulation of ClC-3 expression in the DRG.
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Qin-Yi Chen
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Shi-Yu Deng
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Chao-Yang Tan
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Yang Wang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Li-Cang Zhu
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
14
|
Kim WS, Shalit ZA, Nguyen SM, Schoepke E, Eastman A, Burris TP, Gaur AB, Micalizio GC. A synthesis strategy for tetracyclic terpenoids leads to agonists of ERβ. Nat Commun 2019; 10:2448. [PMID: 31164645 PMCID: PMC6547701 DOI: 10.1038/s41467-019-10415-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Natural product and natural product-like molecules continue to be important for the development of pharmaceutical agents, as molecules in this class play a vital role in the pipeline for new therapeutics. Among these, tetracyclic terpenoids are privileged, with >100 being FDA-approved drugs. Despite this significant pharmaceutical success, there remain considerable limitations to broad medicinal exploitation of the class due to lingering scientific challenges associated with compound availability. Here, we report a concise asymmetric route to forging natural and unnatural (enantiomeric) C19 and C20 tetracyclic terpenoid skeletons suitable to drive medicinal exploration. While efforts have been focused on establishing the chemical science, early investigations reveal that the emerging chemical technology can deliver compositions of matter that are potent and selective agonists of the estrogen receptor beta, and that are selectively cytotoxic in two different glioblastoma cell lines (U251 and U87). Many natural-product like drugs have a tetracyclic terpenoid core. Here, the authors developed a synthesis of triterpene-like tetracyclic systems, and apply this method to the preparation of a number of enantiomeric compounds, two of which are very selective ligands for estrogen receptor beta
Collapse
Affiliation(s)
- Wan Shin Kim
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA
| | - Zachary A Shalit
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA
| | - Sidney M Nguyen
- Dartmouth College, Geisel School of Medicine, Department of Neurology, Lebanon, NH, 03756, USA
| | - Emmalie Schoepke
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, 63110, USA
| | - Alan Eastman
- Dartmouth College, Geisel School of Medicine, Department of Molecular and Systems Biology, Lebanon, NH, 03756, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, 63110, USA
| | - Arti B Gaur
- Dartmouth College, Geisel School of Medicine, Department of Neurology, Lebanon, NH, 03756, USA.
| | - Glenn C Micalizio
- Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, NH, 03755, USA.
| |
Collapse
|
15
|
Wai H, Du K, Anesini J, Kim WS, Eastman A, Micalizio GC. Synthesis and Discovery of Estra-1,3,5(10),6,8-pentaene-2,16α-diol. Org Lett 2018; 20:6220-6224. [PMID: 30221523 PMCID: PMC6415968 DOI: 10.1021/acs.orglett.8b02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A metallacycle-centered approach to the assembly of partially aromatic synthetic steroids was investigated as a means to prepare a boutique collection of unique steroidal agents. The synthesis and discovery of estra-1,3,5(10),6,8-pentaene-2,16α-diol (VII) is described, along with structure-activity relationships related to its cytotoxic properties. Overall, VII was found to have a GI50 = 0.2 μg/mL (∼800 nM) in MDA-MB-231 human breast cancer cells, be an efficacious estrogen receptor agonist with potency for ERβ > ERα (ERβ EC50 = 21 nM), possess selective affinity to the cdc-2-like kinase CLK4 (Kd = 350 nM), and be phenotypically related to paclitaxel by an unbiased panel assessment.
Collapse
Affiliation(s)
- HtooTint Wai
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Kang Du
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Jason Anesini
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Wan Shin Kim
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| | - Alan Eastman
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03755
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03756
| |
Collapse
|
16
|
Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2472-2480. [DOI: 10.1016/j.bbadis.2018.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
|